Still no participant
Still no reviews
CUML2000 - Data Analysis and Visualisation Using Python- 4 (0+1+3)
CUML2001 - Machine Learning using Python - 4 (1+2+1)
CUML2010 - ML for Predictive Analysis - 4 (1+2+1)
CUML2011 - ML for Image Analytics - 4 (0+2+2)
CUML 2009 - Mathematics for ML - 3 (2+1+0)
CUML 2008 - IoT Analytics - 4 (0+2+2)
CUML 2012 - Digital video Processing - 3 (0+2+1)
CUML2004 ML for Hyperspectral imaging 6 (0+4+2)
CUML2005 Internship 4 (0+0+4)
CUML2006 Project 4 (0+0+4)
----------------------------------------------------------------------------------------------------------------------------------
Code Course Title T-P-Pj (Credit) Prerequisite
----------------------------------------------------------------------------------------------------------------------------------
MLCU2000 Data Science and Machine Learning 2-9-15 NIL
----------------------------------------------------------------------------------------------------------------------------------
● Understand the scope, stages, applications, effects and challenges of ML.
● Understand the mathematical relationships within and across ML algorithms and the paradigms of supervised and unsupervised learning.
● Able to get jobs in AI/ML field
--------------------------------------------------------------------------------------------------------------------------------------
COs Course outcomes Mapping COs with POs
(High-3, Medium-2, Low-1)
--------------------------------------------------------------------------------------------------------------------------------------
CO1 | Able to gain knowledge on design and implementation of various machine learning algorithms in a range of real world applications. | PO1 (3) |
CO2 | Able to analyze prediction and classification using different ML and deep learning methods | PO2(3) |
CO3 | Ability to solve real world problems using ML solutions in their respective fields of study. | PO2(3) |
CO4 | Ability to design product | PO3 (2), PO5(2) |
CO5 | Able to do research for publishing articles/ file patents |
PO4 (3) |
--------------------------------------------------------------------------------------------------------------------------------------
6.1 Fundamentals of Video Processing: Digital Video Acquisition, Principles of Color Video,
Video Camera, Video Display, Analog Vs Digital Video: Progressive Vs Interlaced scans, Signal, Bandwidth Characterization of a Digital Video Signal.
Practice:
6.2 Fourier Analysis of Digital Video Signals: Spatial and Temporal resolution, Fourier Analysis of Digital Video Signals, Spatial-Temporal Sampling: Temporal Frequency Response and Flicker Perception. Spatial Frequency Response, Spatiotemporal Frequency Response, Smooth Pursuit Eye Movement
Practice:
6.3 Digital Video Formats: Significance of Video Formatting, Data rate and bandwidth trade-off, File Formats: MP4, MOV, WMV, AVCHD, FLV, AVI, WebM, MKV
Digital Video Compression Standards: Digital Video Compression Metrics, Digital Video Storage Precisions, Significance of Video compression, Video Compression Codec’s: Motion JPEG, JPEG 2000, H.264/MPEG-4 AVC, VP8, HEVC, H.265 High Efficiency Video Codec.
Practice:
6.4 Digital Video Editing Basics: Video Editing Types- Online, Offline, Linear, Non-linear, Assemble, Insert, Rough-cut, Video Shot Transition Effects: Cut, Fade, Wipe, Dissolve, B-roll, Video Shot Boundary Detection Methods: pixel differences, statistical differences, histogram comparisons, edge differences and motion vectors. Video Shot Detection Performance Metrics: ROC Curves, Recall, Precision, F-Measure
Practice:
Project List
TEXT BOOK:
REFERENCE BOOK:
8.1 Defining IoT Analytics and Challenges
IoT
Benefits of Deploying IoT
End to End IoT architecture
IoT challenges
8.2 IoT Protocols
8.2.1 Wireless Protocol
Connectivity Protocols (when Power is Limited)
Bluetooth Low Energy (BLE)
Zigbee
LoRaWAN
NFC
8.2.2 Connectivity Protocols (when Power is Not a problem)
Wifi
8.2.3 Data Communication Protocol
MQTT
Web-Socket
HTTP
8.2 Sensors
Types of Sensors based on communication-I2C, SPI
Types of Sensors based on Application
8.3 Overview of 32 -bit Controller
ESP8266
ESP32
Raspberry Pi
8.4 AWS IoT for Cloud
AWS IoT Core services
AWS IoT Analytics services
AWS DynamoDB Services
8.5 Thingspeak for IoT
Getting and posting Data to IoT Cloud using ESP devices
Posting Data to IoT Cloud using Raspberry Pi
8.6 ThingWorx for Industrial IoT
Building Dashboard on Thingworx platform
Binding the senor value to the dashboard
Text Book:
Reference Books:
2. Geng, Hwaiyu, ed. Internet of things and data analytics handbook. John Wiley & Sons, 2017.
Course objective, outcome, methodology and assessment.
Why data visualisation
Story telling using Visuals & Infographics
https://venngage.com/blog/9-types-of-infographic-template/#1
https://www.edugrad.com/tutorials/learn-data-visualization-using-python/15
Tips on good visuals
https://statedashboard.odisha.gov.in/
https://www.youtube.com/watch?v=4pymfPHQ6SA
Project Groups:
Students will be divided into groups and assigned projects. Each group will do two projects.
Practice
Environmental setup - Anaconad and Jupyter notebook, Anaconda Navigator and Libraries Installation
Practice
Python Fundamentals, Use Case - Data Analysis, Exploring and learning assignments on Jupyter Notebook
https://towardsdatascience.com/data-visualization-say-it-with-charts-in-python-138c77973a56
https://towardsdatascience.com/plotting-with-python-c2561b8c0f1f
https://towardsdatascience.com/introduction-to-data-visualization-in-python-89a54c97fbed
Project - 1
For Project -1, the student group has to define the objective/s of the study, identify the data that will be needed and the source of such data
Make Presentations groupwise
Practice
Data collection/importing and reading using Python function of different types of files, i.e. CSV, HTML, Excel - Get CSV data files from source and read them, get HTML file and read, Get Excel sheet and read
https://perso.telecom-paristech.fr/eagan/class/igr204/datasets
https://www.youtube.com/watch?v=eWFwe41LyWk
https://towardsdatascience.com/wrangling-data-with-pandas-27ef828aff01
https://www.youtube.com/watch?v=ndwuUzgAiPY
https://www.youtube.com/watch?v=Ycq3sDg6ji0
Sorting data, Missing values & Munging data
https://www.youtube.com/watch?v=-dwjEfv2R50
https://www.youtube.com/watch?v=EaGbS7eWSs0
Project - 1
Data collection and sorting for the assigned project
Pandas Tutorial 1. What is Pandas python? Introduction and Installation- https://www.youtube.com/watch?v=CmorAWRsCAw
Pandas Tutorial2. Dataframe and Series Basics- Selecting row and column- https://www.youtube.com/watch?v=zmdjNSmRXF4
Pandas Tutorial 3: Different Ways Of Creating DataFrame - https://www.youtube.com/watch?v=3k0HbcUGErE
Python Pandas Tutorial 4: Read Write Excel CSV File- https://www.youtube.com/watch?v=-0NwrcZOKhQ
Importing data in python - Read excel file - https://www.youtube.com/watch?v=lco-r5CgvhY
Pandas Tutorial 8 | How to import HTML data in Python | Importing HTML data in Python - https://www.youtube.com/watch?v=ndwuUzgAiPY
Pandas Tutorial 13, Crosstabs - https://www.youtube.com/watch?v=I_kUj-MfYys
Practice
Basics of Numpy
https://www.youtube.com/watch?v=xECXZ3tyONo
Complete Python NumPy Tutorial (Creating Arrays, Indexing, Math, Statistics, Reshaping) - https://www.youtube.com/watch?v=GB9ByFAIAH4
Practice
Basic of Matplotlib
https://www.youtube.com/watch?v=MbKrSmoMads&pbjreload=10
Matplotlib Tutorial 1 - Introduction and Installation- https://www.youtube.com/watch?v=qqwf4Vuj8oM
Matplotlib Tutorial 2 - format strings in plot function - https://www.youtube.com/watch?v=zl5qPnqps8M
Matplotlib Tutorial 3 - Axes labels, Legend, Grid- https://www.youtube.com/watch?v=oETDriX9n1w
Matplotlib Tutorial 4 - Bar Chart - https://www.youtube.com/watch?v=iedmZlFxjfA
Matplotlib Tutorial 5 - Histograms - https://www.youtube.com/watch?v=r75BPh1uk38
Matplotlib Tutorial 6 - Pie Chart - https://www.youtube.com/watch?v=GOuUGWGUT14
Matplotlib Tutorial 7 - Save Chart To a File Using savefig - https://www.youtube.com/watch?v=XLJHkCn48lM
Plotting real-time data using Python - https://www.youtube.com/watch?v=GIywmJbGH-8
Project (work on Project -1)
Work on the projects assigned using Python Libraries
Pandas Tutorial 1. What is Pandas python? Introduction and Installation- https://www.youtube.com/watch?v=CmorAWRsCAw
Pandas Tutorial 3: Different Ways Of Creating DataFrame - https://www.youtube.com/watch?v=3k0HbcUGErE
Python Pandas Tutorial 4: Read Write Excel CSV File
https://www.youtube.com/watch?v=-0NwrcZOKhQ
Importing data in python - Read excel file - https://www.youtube.com/watch?v=lco-r5CgvhY
Pandas Tutorial 8 | How to import HTML data in Python | Importing HTML data in Python - https://www.youtube.com/watch?v=ndwuUzgAiPY
Pandas Tutorial 13, Crosstabs - https://www.youtube.com/watch?v=I_kUj-MfYys
Practice
Plotly
https://plotly.com/python/basic-charts/
Graphing Library - https://plotly.com/python/
Plotly Python - Plotly multi line chart| Plotly Python data visualization- https://www.youtube.com/watch?v=pfhBbJ2MnMI
Plotly Data Visualization in Python | Part 13 | how to create bar and line combo chart - https://www.youtube.com/watch?v=AQG4RQolUC8
Plotly Web based visualisation - https://www.youtube.com/watch?v=B911tZFuaOM
Project (Project-1)
Work on Project
Interim Presentation
Practice
Seaborn - Scatter Chart, Bubble Chart, Gapminder
https://www.youtube.com/watch?v=MGOcVAOuXxo
https://www.tutorialspoint.com/seaborn/seaborn_tutorial.pdf
Interactive Data Visualization - https://www.youtube.com/watch?v=VdWfB30QTYI
Practice
Web Scrapping
https://www.youtube.com/watch?v=mKxFfjNyj3c
Web scraping in Python (Part 4)_ Exporting a CSV with pandas - https://www.youtube.com/watch?v=Zh2fkZ-uzBU
Web scraping in Python (Part 2)_ Parsing HTML with Beautiful Soup - https://www.youtube.com/watch?v=zXif_9RVadI
Webscraping - Mode, Median, Mean, Range, and Standard Deviation- https://www.youtube.com/watch?v=mk8tOD0t8M0
Web Scraping Dynamic Graphs to CSV Files using Python - https://www.youtube.com/watch?v=NYK_1bVoBfU
Practice
Solve the 10 problem (started from session 7)
-students will submit the assignment (in groups)
(upload the assignment ...done by Prof. Ramana)
Practice
Dashboard Basics
https://www.youtube.com/watch?v=e4ti2fCpXMI
Create Presentation Slides from Jupyter - https://www.youtube.com/watch?v=utNl9f3gqYQ
Dash and Python 1_ Setup -https://www.youtube.com/watch?v=Ldp3RmUxtOQ
Dash and Python 2_ Dash Core Components - https://www.youtube.com/watch?v=NM8Ue4znLP8
Dash and Python 3_ Using CSS - https://www.youtube.com/watch?v=x9mUZZ19dl0
Practice
Dash (plotly) and Python
https://www.youtube.com/watch?v=Ldp3RmUxtOQ
Dash in 5 Minutes - https://www.youtube.com/watch?v=e4ti2fCpXMI
How to Create a Slideshow using Jupyter+Markdown+Reveal.js- https://www.youtube.com/watch?v=EOpcxy0RA1A
ipython dashboard - https://www.youtube.com/watch?v=LOWBEYDkn90
Plotting real-time data using Python - https://www.youtube.com/watch?v=GIywmJbGH-8
Practice
Interactive charts/Maps using Bokeh,
Dash board using Dash
https://www.youtube.com/watch?v=o4TB6LTPDaY
Practice
IPython-Dashboard
Live graphs
https://pypi.org/project/IPython-Dashboard/
https://pythonprogramming.net/live-graphs-data-visualization-application-dash-python-tutorial/
Project
Work on Project - 1 to make dash boards
Project
Final presentation of Project -1
Project -2
Start Project - 2 (ERP Dash Board)
Define the objective and prepare the flow chart
Project
Make presentations on the objective and flow chart of Project-2
Project
Work on Project - 2
Project
Make interim presentation on Project - 2
Project
Work on Project - 2
Project
Final Presentation on Project -2
Project
Make final changes on Project -1 & Project -2 to make it ready for External Evaluation
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
Lecture Notes 1:- Accessing collecting the datasets-session 1,2
Lecture Notes 1:- Noise reduction in datasets using python- session 5,6
Lecture Notes 1:- Finding Correlation between features- sessions 7,8
Lecture Notes 1:- Principal component analysis (PCA) sessions 11,12
Lecture Notes 1:- Linear discriminant analysis (LDA)-sessions 13,14
Lecture Notes 3:- Linear discriminant analysis (LDA)-sessions 13,14
Lecture Notes 1:- Regression (Linear, Polynomial)- sessions 18,19,20
Lecture Notes 1:- Linear Regression Multiple Variables-sessions 21,22,23
Lecture Notes 1:- Logistic Regression (Multiclass Classification)-sessions 24,25,26
Lecture Notes 2:- Logistic Regression
Lecture Notes 1:- Artificial Neural Network - sessions 31,32
Lecture Notes 1:- Feed Forward Neural Network - sessions 33,34,35
Lecture Notes 1:- Back Propagation Neural Network - sessions 36,37,38
Lecture Notes 1:- Root Mean Square Error (RMSE)-sessions 42,43
Lecture Notes 2:- Root Mean Square Error (RMSE)-session-42,43
Lecture Notes 1:- Confusion Matrix (TN, TP, FP, FN) -sessions 46,47
Lecture Notes 1:- Sensitivity, Specificity, Overall Accuracy-session-48,49
Lecture Notes 2:- Sensitivity, Specificity, Overall Accuracy -sessions 48,49
Lecture Notes 1:- Receiver Operating Characteristic ROC Curve -sessions 50,51,52
Lecture Notes 2:- Receiver Operating Characteristic ROC Curve-session-50,51,52
Lecture Notes :- 4.1 Accessing individual pixels using matrix concept
Lecture Notes :- 4.1 Image resize, grey scale conversion, Colour channel splitting
Lecture Notes :- 4.1-Histogram equalisation (CLACH)
Lecture Notes :- 4.2 - Edge detection (Sobel, Canny), Morphological operations
Lecture Notes :- 4.2-Image segmentation, Image Thresholding, Binary conversion
Lecture Notes :- 4.2-Feature extraction based on size, shape and colour
Lecture Notes :- 4.2 - A Comparison of SIFT, SURF and ORB on OpenCV
Lecture Notes :- 4.2-Feature Extraction using convolutional neural network (CNN)
Lecture Notes :- session-4.3 Matrix flattening, Horizontal stacking, Vertical stacking, padding
Lecture Notes 1:- session-4.4 Support vector machine kernels
Lecture Notes 2 :- session-4.4 support vector machine
Dimensionality-reduction-and-classification-on-Hyperspectral-Images-Using-Python
Dimensionality-reduction-and-classification-on-Hyperspectral-Images-Using-Python
Practice 1:
Creating Things, Certificates, Policies in AWS IoT core Services
Practice 2:
Connect NodeMCU with AWS IoT Core Services
Practice 3:
Connect ESP32 with AWS IoT Core Services
Practice 4:
Connect Raspberry Pi with AWS IoT Core Services
Practice 5:
Posting Sensor Data to AWS IoT Core Services
Practice 6:
Controlling Devices from AWS IoT Core Services
Practice 7:
Storing Sensor Data into DynamoDB using AWS IoT core
Practice 8:
Get Raspberry Pi to interact with Amazon Web Services & push data into the DynamoDB
Practice 9:
Posting Sensor Data to the Thingspeak to aggregate, visualize and analyze live data streams in the cloud
Practice 10:
Portable IoT Based Fingerprint Biometric Attendance System
Practice 11:
IoT-based Covid Patient Blood Oxygen monitor & calling an ambulance on critical blood oxygen levels
Notes : https://www.slideshare.net/MazinAlwaaly/multimedia-color-in-image-and-video
Video : https://youtu.be/XZwxyBblkJM
Notes : https://www.slideserve.com/shae/digital-video-processing-powerpoint-ppt-presentation
Video: https://www.youtube.com/watch?v=Gnl1vuwjHto
Notes : Analog Vs Digital Video
Video : https://youtu.be/Zd2nl5jpn7A
Notes: https://www.slideshare.net/aibad/difference-between-interlaced-progressive-scanning
Video : https://www.youtube.com/watch?v=ZJXczn_jPLQ
Notes : https://www.slideshare.net/devashishraval/introduction-to-video-signals
Video : https://www.youtube.com/watch?v=xAc4TSp87IY
Notes : https://www.slideshare.net/reachquadri/what-is-spatial-resolution
Video : https://www.youtube.com/watch?v=ePp2es3nvDA
Video : https://www.youtube.com/watch?v=zY-Eej5d_lo
Notes : https://eeweb.engineering.nyu.edu/~yao/EL6123old/FT.pdf
Video : https://www.youtube.com/watch?v=RFOGJB564Kk&list=PLwjK_iyK4LLA-zCHK98LHTek38HUzbOxn
Video : https://www.youtube.com/watch?v=E-5p26RfkMo
Notes : https://eeweb.engineering.nyu.edu/~yao/EL6123old/FT.pdf
Notes : https://eeweb.engineering.nyu.edu/~yao/EL6123old/FT.pdf
Video : https://www.youtube.com/watch?v=a-rHXtGLyI0
Video : https://www.youtube.com/watch?v=Giv87yVK6XY
Notes : https://www.slideshare.net/AdeWijaya5/smooth-pursuit-eye-movement
Video :
Notes :
Video :
Notes : https://www.adobe.com/in/creativecloud/video/discover/best-video-format.html
Video : https://www.youtube.com/watch?v=x6sSfIG8o3U&t=68s
Notes :
Video :
Notes :
Video :
Notes :
Video :https://www.youtube.com/watch?v=SPvdHvxF--Q
Notes :
Video :https://www.slideshare.net/Shreyash03/video-compression-74491649
Session - 28
Video Compression Codec’s: Motion JPEG, JPEG 2000, H.264/MPEG-4 AVC, VP8, HEVC, H.265 High Efficiency Video Codec.
Video : https://www.youtube.com/watch?v=-4NXxY4maYc&t=358s
Notes:
Notes : https://www.slideshare.net/TANZICT/video-editing-16421406
Video :
Notes :
Video :
Notes :
Video : https://www.youtube.com/watch?v=4TQugiLxneY
Video: https://www.youtube.com/watch?v=l1C34QmGuIA
Notes : https://www.masterclass.com/articles/what-is-b-roll-footage-and-how-can-you-use-it#what-is-broll
Video : https://www.youtube.com/watch?v=sgYX1c8rczk
Notes : http://ceur-ws.org/Vol-2589/Paper6.pdf
Video :
Video :
Notes :http://ceur-ws.org/Vol-2589/Paper6.pdf
http://www.tjprc.org/publishpapers/tjprcfile172.pdf
Notes :http://www.tjprc.org/publishpapers/tjprcfile172.pdf
Video :
Notes : https://medium.com/swlh/recall-precision-f1-roc-auc-and-everything-542aedf322b9
Video : https://www.youtube.com/watch?v=8d3JbbSj-I8
When Models Meet Data:
Notes : When Models Meet Data
Session -1
Data, Models, and Learning
Data : https://www.youtube.com/watch?v=vgwyzNkuiN8
Models : https://www.youtube.com/watch?v=yN7ypxC7838
learning : https://www.youtube.com/watch?v=VCF8kiLtBzU
session-2
Empirical Risk Minimization
video : https://youtu.be/8fsJCyBOizQ
session-3
Parameter Estimation
video : https://youtu.be/6KBIWfGYkd8
Practice-1
Curve Fitting in Python
video : https://www.youtube.com/watch?v=PuNADWh4X5s
session-4
Probabilistic Modelling and Inference
video : https://youtu.be/8qtOzLt0x6U
session-5
Directed Graphical Models
video : https://youtu.be/3XysEf3IQN4
session-6
Model Selection
video : https://youtu.be/iUUSamG4P80
Practice-2
Exploratory Data Analysis in Python
video : https://www.youtube.com/watch?v=-o3AxdVcUtQ
Linear Regression:-
Notes : Linear Regression
session-7
Problem Formulation
video : https://youtu.be/EmFCeFTRVu8
session-8
Parameter Estimation
video : https://youtu.be/6KBIWfGYkd8
session-9
Bayesian Linear Regression
video : https://youtu.be/_pQyco14Qt0
Practice-3
Kernel Density Estimation in Python
video : https://www.youtube.com/watch?v=Wz0QO4bQq6w
session-10
Maximum Likelihood as Orthogonal Projection
video : https://youtu.be/sguol03tfWo
Dimensionality Reduction with Principal Component Analysis:-
Notes : Dimensionality Reduction with Principal Component Analysis
session-11
Problem Setting
Video : https://www.youtube.com/watch?v=wyoS89J3ap4
session-12
Maximum Variance Perspective
video : https://www.youtube.com/watch?v=-A64n7Ss35g
session-13
Projection Perspective
video : https://www.youtube.com/watch?v=vhrJBrQRucw
Practice-4
Probability Distribution Function Plotting in Python
video : https://www.youtube.com/watch?v=fQ0Iy0Sew_U
session-14
Eigenvector Computation and Low-Rank Approximations
video : https://www.youtube.com/watch?v=dfxu9ijDN18
session-15
PCA in High Dimensions
video : https://www.youtube.com/watch?v=s71tHPKgRNo
session-16
Key Steps of PCA in Practice
video : https://www.youtube.com/watch?v=osgqQy9Hr8s
Practice-5
Cumulative Distribution Function Plotting in Python
video : https://www.youtube.com/watch?v=fQ0Iy0Sew_U
session-17
Latent Variable Perspective
video : https://www.youtube.com/watch?v=ztPBVcJic3A
Density Estimation with Gaussian Mixture Models:-
Notes : Density Estimation with Gaussian Mixture Models
session-18
Gaussian Mixture Model
video : https://youtu.be/IsJn9b9gmAg
session-19
Parameter Learning via Maximum Likelihood
video : https://www.youtube.com/watch?v=EuyEmNHgskU&t=427s
session-20
EM Algorithm
video : https://youtu.be/qy3WKmSXM64
session-21
Latent-Variable Perspective
video : https://youtu.be/ztPBVcJic3A
Practice-6
Dimensionality Reduction and Feature Extraction in Python
video : https://www.youtube.com/watch?v=h6MCf89GqCM
Classification with Support Vector Machines:-
Notes : Classification with Support Vector Machines
session-22
Separating Hyperplanes
video : https://www.youtube.com/watch?v=bzIQ6hoHIps
session-23
Primal Support Vector Machine
video : https://youtu.be/OR-xXUmBtYU
session-24
Dual Support Vector Machine
video : https://youtu.be/OR-xXUmBtYU
session-25
Kernels
video : https://www.youtube.com/watch?v=9IfT8KXX_9c
session-26
Numerical Solution
video : https://www.youtube.com/watch?v=kEjhbylvk0I
ASSIGNMENT:
QUESTION BANK:
Dr. Sujata Chakravarty is a Senior Member of IEEE. Her research area includes multidisciplinary fields like Application of Computational Intelligence and Evolutionary Computing Techniques in the field of Financial Engineering, Bio-medical data classification, Smart Agriculture, Intrusion Detection System in Computer-Network, Analysis and prediction of different financial time series data. She is a reviewer of many […]
Manoj Kumar Behera, M. tech. in Computer Science, NIT Rourkela, Qualified GATE in 2008. His research area includes application of machine learning and image processing in the fields of smart agriculture and Bio-medical applications. He has published about 20 articles in many international journals and conferences.