Still no participant
Still no reviews
Course-1 (Code: CUDA2200): STORY TELLING USING VISUALISATION AND DATA REQUIREMENTS (0-2-0)
Course-2 (Code:CUDA2201): PYTHON LIBRARIES: PANDAS (0-4-0)
Course-3 (Code: CUDA2202): VISUALISATION WITH MATPLOTLIB, PLOTLY AND SEABORN (0-3-0)
Course-4 (Code: CUDA2203): INTERACTIVE DATA VISUALISATION WITH BOKEH (0-2-2)
Course-5 (Code: CUDA2204): INFOGRAPHICS AND DASHBOARD (0-3-0)
Course-6 (Code: CUDA2205): PROJECT (0-0-4)
COURSE OUTCOMES:
CO1: Create impactful visualisation
PO5, PO10
1.1 Storytelling: Objective finalisation and flow
1.2 Data Requirements
1.3 Sources of data
1.4 Collection of data
1.5 Working with Python Libraries - Setting up Environment and Python Libraries
1.6 Working with Python Libraries - Pandas, Numpy, Matplotlib, Seaborn, Plotly
2. PYTHON LIBRARIES: PANDAS (0-4-0)
2.1 Review of pandas DataFrames – Introduction
https://campus.datacamp.com/courses/pandas-foundations/data-ingestion-inspection?ex=1
2.2 Inspecting your data, DataFrame data types
2.3 NumPy and pandas working together- Building DataFrames from scratch, Zip lists to build a DataFrame, Labeling your data, Building DataFrames with broadcasting
2.4 Importing & exporting data, Reading a flat file, Delimiters, headers, and extensions
2.5 Plotting with pandas- Plotting series using pandas, Plotting DataFrames, Extracting and transforming data
https://www.datacamp.com/courses/manipulating-dataframes-with-pandas
2.6 Indexing DataFrames, Index ordering, Positional and labeled indexing, Indexing and column rearrangement
2.7 Slicing DataFrames, Slicing rows, Slicing columns
2.8 Subselecting DataFrames with lists, Filtering DataFrames, Thresholding data, Filtering columns using other columns, Filtering using NaNs, Transforming DataFrames
2.9 Pivoting Dataframes
2.10 Pivoting and the index, Pivoting a single variable, Pivoting all variables, Stacking & unstacking DataFrames, Stacking & unstacking I, Stacking & unstacking II
2.11 Restoring the index order, Melting DataFrames, Adding names for readability
2.12 Pivot tables - https://campus.datacamp.com/courses/manipulating-dataframes-with-pandas/rearranging-and-reshaping-data?ex=13
2.13 Setting up a pivot table, Using other aggregations in pivot tables, Using margins in pivot tables, learn how to interact with and extract data from them.
2.14 Index objects and labeled data
https://campus.datacamp.com/courses/manipulating-dataframes-with-pandas/advanced-indexing?ex=1
2.15 Index values and names, Changing index of a DataFrame, Changing index name labels
2.14 Building an index, then a DataFrame, Hierarchical indexing, Extracting data with a MultiIndex, Setting & sorting a MultiIndex
2.15 Categoricals and groupby
https://campus.datacamp.com/courses/manipulating-dataframes-with-pandas/grouping-data?ex=1
2.16 Advantages of categorical data types, Grouping by multiple columns, Grouping by another series
2.17 Groupby and aggregation, Computing multiple aggregates of multiple columns, Aggregating on index levels/fields, Grouping on a function of the index, Groupby and transformation
2.18 Detecting outliers, Filling missing data (imputation) by group, Groupby and filtering
2.19 Indexing time series
https://campus.datacamp.com/courses/pandas-foundations/time-series-in-pandas?ex=1
2.20 Indexing time series - Reading and slicing times
2.21 Creating and using a Datetime Index - Partial string indexing and slicing, Reindexing the Index
2.22 Resampling time series data, Resampling and frequency, Separating and resampling, Rolling mean and frequency, Resample and roll with it
2.23 Manipulating time series data - Method chaining and filtering, Missing values and interpolation
2.24 Time zones and conversion
Case Study - Sunlight in Austin - https://www.kaggle.com/niyatijasani/sunlight-in-austin-texas-over-the-years
Reading and cleaning the data, Statistical exploratory data analysis, Visual exploratory data analysis, Probability of high temperatures, Final Discussions
3. VISUALISATION WITH MATPLOTLIB AND SEABORN (0-3-0)
3.1 Plotting multiple graphs
3.2 Multiple plots on single axis, Using Axes, using subplots, customising axes, using x lim, using y lim, using axis
3.3 Using legends, annotations and modifying styles
3.4 Visualising Regressions- Simple Linear regression, Higher order regression,
3.5 Grouping Linear Regressions – by hue, by row or column
3.6 Visualising univariate distributions – strip plot, Swarm plot, Violin Plot
3.7 Visualising multivariate distributions – plotting joint distributions, plotting distributions pairwise
3.8 Visualising correlation with heatmaps
3.9 Visualising time series, Multiple time series on common axes, multiple time series slices
3.10 Timeseries with moving windows
3.11 Plotting moving averages, plotting moving standard deviations, interpreting moving statistics
3.12 Time series visualization- Plotting time series, datetime indexing, Plotting date ranges, partial indexing
3.13 Web scraping libraries
3.14 Web scrapping of Flipkart website
4. INTERACTIVE DATA VISUALIZATION WITH BOKEH (0-2-2)
4.1 Plotting with glyphs – simple scatter plot, scatter plot with different shapes, Customising scatter plots
Python Tutorial: Plotting with glyphs
https://www.youtube.com/watch?v=vGX0TtzrWE84.2 Additional glyphs, Lines, lines and markers, patches, data formats4.3 Plotting data from NumPy arrays4.4 Plotting data from Pandas dataframes4.5 Bokeh column data source4.6 Customising glyphs – selection and non-selection glyphs, Hover glyphsPython Tutorial: Customising glyphs- https://www.youtube.com/watch?v=q64iiFepBcU4.7 Color mapping
4.8 Introduction to layouts, creating rows of plot, creating columns of plot, Nesting rows and columns
4.9 Advanced layout, creating gridded layout, displaying tabbed layout
4.10 Linking plots together, linked axes, linked brushing
4.11 Annotations and guides- create legends, positioning and styling legends
4.12 Adding Hover tooltips for showing details
4.13 Introducing Bokeh servers, understanding Bokeh apps
4.14 Using the current document- add single slider, add multiple slider in one document
4.15 Connecting sliders to plots, adding call backs to sliders
4.16 Combine Bokeh models to layouts – Learn widget callbacks, updating plot from dropdown, updating data sources from dropdown callbacks, synchronise two dropdowns
4.17 Button – Button widgets, Button styles
4.18 Hosting applications for wider audience
4.19 Apply all above learnings to a case study- (Sunlight in Austin)
5. INFOGRAPHICS AND DASHBOARD ( 0-3-0)
5.1 Interactive Python Dashboards with Plotly
5.2 Plotly Charts - Bar Charts, Line Charts, Scatter Plots, Heat Maps
5.3 Dashboard Layouts
5.4 Converting Simple Plotly Plot to Dashboard with Dash
5.5 Dash Components - HTML Components, Core Components
5.6 Markdown with Dash
5.7 Using Help() with Dash
5.8 Interactive components
5.9 Single Callbacks for Interactivity, Dash Callbacks for Graphs
5.10 Multiple Inputs, Multiple Outputs
5.11 Call backs with State
5.12 Interacting with Visualisation – Hover over data, click data
5.13 Updating graphs on interaction
5.14 Live Updating – Layout updating, Simple live update
5.15 Deployment to website- App authorisation, Deploying App to Heroku
5.16 Will apply all learning on Project
6. PROJECT (0-0-4)
Each Student will take up one project
Session 1 & 2: Story board development- Objective finalisation and flow of the story
Why a story board?
https://www.youtube.com/watch?v=G0HCqSe__3Q
https://www.slideshare.net/mobile/AmandaMakulec/storyboarding-for-data-visualization
Create an Interactive Slide Deck in PowerPoint
https://www.youtube.com/watch?v=waSuDm0CXpk
Impactful visualisation: Hans Rosling's 200 Countries, 200 Years, 4 Minutes - The Joy of Stats - BBC Four
https://www.youtube.com/watch?time_continue=15&v=jbkSRLYSojo&feature=emb_logo
Session 3 & 4: Data Requirements, Sources of data, Collection of data
https://serc.carleton.edu/NICHE/resources_data_analysis.html
Session 5 & 6: Working with Python Libraries - Setting up Environment and Python Libraries
Anaconda Tutorial 2019 - Python Virtual Environment Manager-
https://www.youtube.com/watch?v=mIB7IZFCE_k
How to Download & Install Python 3.8.2 on Windows 10/8/7
https://www.youtube.com/watch?v=O5nHFBhCfFo
Session 7 & 8: Working with Python Libraries - Pandas, Numpy, Matplotlib, Seaborn, Plotly
https://www.edureka.co/blog/python-pandas-tutorial/
https://www.edureka.co/blog/install-numpy/
https://www.edureka.co/blog/python-numpy-tutorial/
Session 9 & 10: Working with Python Libraries - Pandas, Numpy, Matplotlib, Seaborn, Plotly
https://www.edureka.co/blog/python-matplotlib-tutorial/
https://www.edureka.co/blog/python-seaborn-tutorial/
https://medium.com/swlh/plotly-beautiful-data-visualization-made-easy-3f7e48864706
Session 11 & 12: Project -1
Take up a project in groups of two students- Finalise the objective and flow of the story board
Session 13 & 14: Project -1
Take up a project in groups of two students- Finalise the flow of the story board
How to create a story board- https://youtu.be/eSGkeXsaXSY
Session 15 & 16: Presentation on Project
Students presentation in groups on the objective of the project selected
Session 1 & 2: Review of pandas DataFrames – Introduction
https://campus.datacamp.com/courses/pandas-foundations/data-ingestion-inspection?ex=1
Session 3 & 4: Inspecting your data, DataFrame data types
https://www.shanelynn.ie/using-pandas-dataframe-creating-editing-viewing-data-in-python/
https://www.geeksforgeeks.org/python-basics-of-pandas-using-iris-dataset/
Session 5 & 6: NumPy and pandas working together- Building DataFrames from scratch, Zip lists to build a DataFrame, Labeling your data, Building DataFrames with broadcasting
https://towardsdatascience.com/numpy-essentials-for-data-science-25dc39fae39
Session 7 & 8: Importing & exporting data, Reading a flat file, Delimiters, headers, and extensions
https://datatofish.com/import-csv-file-python-using-pandas/
https://medium.com/@kasiarachuta/importing-and-exporting-csv-files-in-python-7fa6e4d9f408
https://www.pluralsight.com/guides/importing-data-from-excel-with-python
Session 9 & 10: Plotting with pandas- Plotting series using pandas, Plotting DataFrames, Extracting and transforming data
https://www.datacamp.com/courses/manipulating-dataframes-with-pandas
https://towardsdatascience.com/data-visualization-using-matplotlib-16f1aae5ce70
Session 11 & 12: Plotting with pandas- Plotting series using pandas, Plotting DataFrames, Extracting and transforming data
https://sergilehkyi.com/extracting-and-transforming-data-in-python/
Session 13 & 14: Indexing DataFrames, Index ordering, Positional and labeled indexing, Indexing and column rearrangement
https://www.youtube.com/watch?v=B7M1Ni_ngc4
Reindexing dataframes - https://www.youtube.com/watch?v=zg2b4GQd2NA
Session 15 & 16: Slicing DataFrames, Slicing rows, Slicing columns
https://www.youtube.com/watch?v=2vFu4YtzfgE
Session 17 & 18: Subselecting DataFrames with lists, Filtering DataFrames, Thresholding data, Filtering columns using other columns, Filtering using NaNs, Transforming DataFrames
https://campus.datacamp.com/courses/intermediate-python/logic-control-flow-and-filtering?ex=14
Session 19 & 20: Pivoting Dataframes
Session 21 & 22: Pivoting and the index, Pivoting a single variable, Pivoting all variables, Stacking & unstacking DataFrames, Stacking & unstacking I, Stacking & unstacking II
https://www.youtube.com/watch?v=xPPs59pn6qU
https://pandas.pydata.org/pandas-docs/stable/user_guide/reshaping.html
Stacking and Unstacking- https://www.youtube.com/watch?v=BUOy4RUUepg
Session 23 & 24: Restoring the index order, Melting DataFrames, Adding names for readability
https://pandas.pydata.org/pandas-docs/version/0.15.2/reshaping.html
Session 25 & 26: Pivot tables -
Session 27 & 28: Setting up a pivot table, Using other aggregations in pivot tables, Using margins in pivot tables, learn how to interact with and extract data from them.
Session 29 & 30: Index objects and labeled data
https://campus.datacamp.com/courses/manipulating-dataframes-with-pandas/advanced-indexing?ex=1
Session 31 & 32: Index values and names, Changing index of a DataFrame, Changing index name labels
https://www.youtube.com/watch?v=zg2b4GQd2NA
Session 33 & 34: Building an index, then a DataFrame, Hierarchical indexing, Extracting data with a MultiIndex, Setting & sorting a MultiIndex
Hierarchical indexing - https://www.youtube.com/watch?v=nE21ZlXiByY
https://www.datacamp.com/community/tutorials/pandas-multi-index
Sorting a Multi Index - https://www.youtube.com/watch?v=eu_pS_NWGD0
Session 35 & 36: Categoricals and groupby
https://campus.datacamp.com/courses/manipulating-dataframes-with-pandas/grouping-data?ex=1
Session 37 & 38: Advantages of categorical data types, Grouping by multiple columns, Grouping by another series
https://www.youtube.com/watch?v=Wb2Tp35dZ-I
Session 39 & 40: Groupby and aggregation, Computing multiple aggregates of multiple columns, Aggregating on index levels/fields, Grouping on a function of the index, Groupby and transformation
https://www.youtube.com/watch?v=u9nftlpCdXQ
Session 41 & 42: Detecting outliers, Filling missing data (imputation) by group, Groupby and filtering
https://www.youtube.com/watch?v=2Qrost474lQ
https://www.youtube.com/watch?v=EgSM6gA1Qjg
working with missing data- https://www.youtube.com/watch?v=_bl9fogd05c
Session 43 & 44: Indexing time series – Reading and slicing times
https://campus.datacamp.com/courses/pandas-foundations/time-series-in-pandas?ex=1
Session 45 & 46: Creating and using a Datetime Index - Partial string indexing and slicing, Reindexing the Index
https://www.youtube.com/watch?v=lMQRjpgJslI
Session 47 & 48: Resampling time series data, Resampling and frequency, Separating and resampling, Rolling mean and frequency, Resample and roll with it
https://www.youtube.com/watch?v=r0s4slGHwzE
https://www.youtube.com/watch?v=RzycSAnfW5M
Session 49 & 50: Manipulating time series data - Method chaining and filtering, Missing values and interpolation
https://www.youtube.com/watch?v=EaGbS7eWSs0&t=1s
Session 51 & 52: Time zones and conversion
https://www.youtube.com/watch?v=mHezNgNBnuA
https://www.youtube.com/watch?v=yCgJGsg0Xa4
Session 53 & 54 : Presentation by students
Case Study - Sunlight in Austin https://www.kaggle.com/niyatijasani/sunlight-in-austin-texas-over-the-years
Reading and cleaning the data –
https://campus.datacamp.com/courses/pandas-foundations/case-study-sunlight-in-austin?ex=1
STEPS
3. VISUALISATION WITH MATPLOTLIB AND SEABORN (0-3-0)
Session 1 & 2: Plotting multiple types of graphs
https://www.youtube.com/watch?v=aS4WlOJQ4mQ
Session 3 & 4: Multiple plots on single axis, Using Axes, using subplots, customising axes, using x lim, using y lim, using axis
https://www.youtube.com/watch?v=6r5JZjokp-0
Session 5 &6: Using legends, annotations and modifying styles
https://www.youtube.com/watch?v=oETDriX9n1w
Session 7 & 8: Visualising Regressions- Simple Linear regression, Higher order regression
https://www.youtube.com/watch?v=7NW4EouQDes
https://365datascience.com/linear-regression/
Session 9 & 10: Grouping Linear Regressions – by hue, by row or column
Session 11 & 12: Visualising univariate distributions – strip plot, Swarm plot, Violin Plot
https://www.youtube.com/watch?v=10UMeXWj0YE
https://www.youtube.com/watch?v=cLHwwRgny5g
Session 13 & 14: Visualising multivariate distributions – plotting joint distributions, plotting distributions pairwise
https://www.youtube.com/watch?v=i6iUCs0D9nk
https://www.youtube.com/watch?v=ap4mfGvgDsM&t=43s
Session 15 & 16: Visualising correlation with heatmaps
https://www.youtube.com/watch?v=m7uXFyPN2Sk
Session 17 & 18: Visualising time series, Multiple time series on common axes, multiple time series slices
https://www.youtube.com/watch?v=p1FQa0SUKnk
Session 19 & 20: Timeseries with moving windows
https://www.youtube.com/watch?v=0fWa9-Vj89g
Session 21 & 22: Plotting moving averages, plotting moving standard deviations, interpreting moving statistics
https://www.youtube.com/watch?v=T2mQiesnx8s
https://www.youtube.com/watch?v=OwnaUVt6VVE
Session 23 & 24: Time series visualization- Plotting time series, datetime indexing, Plotting date ranges, partial indexing
https://www.youtube.com/watch?v=yCgJGsg0Xa4
Session 25 & 26: Web scraping libraries
https://www.youtube.com/watch?v=hWUqPUJWp3k
Session 27 & 28: Project work- Web scrapping of Flipkart website
https://www.youtube.com/watch?v=auDx0aVWn-s
Session 29 & 30: Presentation of Project work
STEPS:
4. INTERACTIVE DATA VISUALIZATION WITH BOKEH (0-2-2)
Session 1 & 2: Plotting with glyphs – simple scatter plot, scatter plot with different shapes, Customising scatter plots
Python Tutorial: Plotting with glyphs- https://www.youtube.com/watch?v=vGX0TtzrWE8
https://www.youtube.com/watch?v=q64iiFepBcU
Session 3 & 4: Additional glyphs, Lines, lines and markers, patches, data formats
https://www.youtube.com/watch?v=eeC_kYxVlgg
Session 5 & 6: Plotting data from NumPy arrays
https://www.youtube.com/watch?v=X-ptGOFwckA
Session 7 & 8: Plotting data from Pandas dataframes
https://www.youtube.com/watch?v=qV_8bMsRq1s
Session 9 & 10: Bokeh column data source
https://www.youtube.com/watch?v=TyMZUVRiju0
Session 11 & 12: Customising glyphs – selection and non-selection glyphs, Hover glyphs
Python Tutorial: Customising glyphs- https://www.youtube.com/watch?v=q64iiFepBcU
Session 13 & 14: Color mapping
https://www.youtube.com/watch?v=hA39KSTb3dY&t=209s
Session 15 & 16: Introduction to layouts, creating rows of plot, creating columns of plot, Nesting rows and columns
https://www.youtube.com/watch?v=Y_UaawEr-wY
Session 17 & 18: Advanced layout, creating gridded layout, displaying tabbed layout
https://docs.bokeh.org/en/latest/docs/user_guide/layout.html
Session 19 & 20: Linking plots together, linked axes, linked brushing
https://www.youtube.com/watch?v=Ceg3EIPbOw8
Session 21 & 22: Annotations and guides- create legends, positioning and styling legends
https://www.youtube.com/watch?v=NwnW_qOkNRw
Session 23 & 24: Adding Hover tooltips for showing details
https://www.youtube.com/watch?v=6APMRxGIAUw
Session 25 & 26: Introducing Bokeh servers, understanding Bokeh apps
https://www.youtube.com/watch?v=1DZcPat2ClM
Session 27 & 28: Using the current document- add single slider, add multiple slider in one document
Session 29 & 30: Connecting sliders to plots, adding call backs to sliders
https://docs.bokeh.org/en/latest/docs/gallery/slider.html
Session 31 & 32: Combine Bokeh models to layouts – Learn widget callbacks, updating plot from dropdown, updating data sources from dropdown callbacks, synchronise two dropdowns
Session 33 & 34: Button – Button widgets, Button styles
https://www.python-course.eu/tkinter_buttons.php
https://www.tutorialspoint.com/python/tk_button.htm
Session 35 & 36: Hosting applications for wider audience
Session 37 & 38: Apply all above learnings to a case study- (Sunlight in Austin)
Session 39 & 40 : Apply all above learnings to a case study- (Sunlight in Austin)
Session 41 & 42: Presentation of Case study
STEPS
5. INFOGRAPHICS AND DASHBOARD ( 0-3-0)
Session 1 & 2: Interactive Python Dashboards with Plotly
https://www.datacamp.com/community/tutorials/learn-build-dash-python
Session 3 & 4: Plotly Charts - Bar Charts, Line Charts
https://www.youtube.com/watch?v=QJPN2J_KGXI&list=PLH6mU1kedUy8fCzkTTJlwsf2EnV_UvOV-&index=3
https://www.youtube.com/watch?v=hCRo_AXzZkU&list=PLH6mU1kedUy8fCzkTTJlwsf2EnV_UvOV-&index=5
Session 5 & 6: Scatter Plots, Heat Maps
https://www.youtube.com/watch?v=LtmdwkprcEk&list=PLH6mU1kedUy8fCzkTTJlwsf2EnV_UvOV-&index=7
Session 7 & 8: Dashboard Layouts
Session 9 & 10: Converting Simple Plotly Plot to Dashboard with Dash
https://www.youtube.com/watch?v=rDodciQhfS8
Session 11 & 12: Dash Components - HTML Components, Core Components
https://dash.plotly.com/dash-html-components
https://dash.plotly.com/dash-core-components
Session 13 & 14: Markdown with Dash
https://www.youtube.com/watch?v=4Kqvh__ofGE&list=PLH6mU1kedUy8fCzkTTJlwsf2EnV_UvOV-&index=20
Session 15 & 16: Using Help() with Dash
https://www.youtube.com/watch?v=Ldp3RmUxtOQ&list=PLCDERj-IUIFCaELQ2i7AwgD2M6Xvc4Slf
Session 17 & 18: Interactive components
https://www.youtube.com/watch?v=Ywf4I0qQs58&list=PLCDERj-IUIFCaELQ2i7AwgD2M6Xvc4Slf&index=6
Session 19 & 20: Single Callbacks for Interactivity, Dash Callbacks for Graphs
https://www.youtube.com/watch?v=LYcEB5cak7U&list=PLCDERj-IUIFCaELQ2i7AwgD2M6Xvc4Slf&index=5
Session 21 & 22: Multiple Inputs, Multiple Outputs
https://www.youtube.com/watch?v=GCGjovcU09E
Session 23 & 24: Call backs with State
https://www.youtube.com/watch?v=LYcEB5cak7U
Session 25 & 26: Interacting with Visualisation – Hover over data, click data
https://dash.plotly.com/interactive-graphing
Session 27 & 28: Updating graphs on interaction
https://community.plotly.com/t/update-graph-as-automatically-as-manually-with-user-interactions/6622
Session 29 & 30: Live Updating – Layout updating, Simple live update
https://dash.plotly.com/live-updates
Session 31 & 32: Deployment to website- App authorisation, Deploying App to Heroku
https://www.youtube.com/watch?v=MxfxiR8TVNU
Session 33, 34, 35 & 36: Will apply all learning on Project - Either Sunlight Austin case study or Flipkart case study
6. PROJECT (0-0-4)
Students will do Story telling by analysing data using Visualisation
Process to be followed
Professor in Management and an enthusiast learner with teaching and research experience of 20 years. Research interests and publications in the area of Rural entrepreneurship, Banking, Women entrepreneurship. Have been a part of many training and research projects. “SUCCESS IS NO ACCIDENT. IT IS HARD WORK, PERSEVERANCE, LEARNING, STUDYING, SACRIFICE AND MOST OF […]
Mr. Debaraj Rana , working as Asst. Professor in the Dept of Electronics & Communication Engineering, School of Engineering and Technology, Bhubaneswar Campus. He has nine years of teaching experience in the field of Electronics and Communication. He has completed his B.Tech from Biju Pattnaik University of Technology and completed in the year 2007 and […]