Still no participant
Still no reviews
1. (CUDA2200) : STORY TELLING USING VISUALISATION AND DATA REQUIREMENTS (0-2-0)
Module: I - Introduction to Data analytics
Data analytics Impact and Importance, Type of Data analytics, Descriptive analytics, Diagnostic analytics, Predictive analytics, Prescriptive analytics, Data analytics vs Decision making, Data analytics vs cost reduction, Dealing with different type of data, Qualitative and Quantitative data, Normal distribution of data, Statistical parameters
Module: II - Storyboarding with Data Visualization
Understanding data visualization, Visualization tools, Frequency distribution plot, Swarm plot, Story plotting, Building up storyline, Presentation of storyboarding with visualization, Data analytics in different sector - product and services, Analytics framework
2. (CUDA2213): SQL (0-2-1)
Module: I - SQL Beginner
CREATE, INSERT, Importing data from file, Select Statement, Select Distinct, WHERE, Logical Operator, UPDATE, DELETE, ALTER, Restore and Backup, Filter option - IN, BETWEEN, LIKE
Module II - SQL Intermediate
ORDER BY, LIMIT, Sorting, Alias, Aggregate command - COUNT, SUM, MEAN, AVERAGE, MIN AND MAX, Group by , HAVING, Conditional statements, Joins - Inner, Left, Right, Full outer, Cross, Except, Unions, Subqueries , Views and Index, String function - Length, Upper, Lower, Trim, Concatenation, Substring, List aggregation
Module III - SQL Advance
Mathematical Function - CEIL and FLOOR, RANDOM, SETSEED, ROUND, POWER, Date and Time function - CURRENT DATE AND TIME, AGE EXTRACT, Pattern (String) Matching - Basic and Advance, Date type conversion, User access control function
3. (CUDA2213) : Data Visualization with Tableau (0-2-1)
Module: I Introduction and Visualization
Download and installation, loading data from Excel and user interface, Core topic – Dimension vs measures, discrete vs Continuous, application of discrete and continuous fields, and aggregation in tableau.
Creating charts in Tableau – Bar Chart, stacked bar chart, line chart, scatter plot, Dual axis charts, and combined axis charts. Funnel chart and cross tabs, Highlight tables, Maps, measure name and Measure values
Module: II Analytics in Tableau
Working with metadata, Data types, rename, hide, unhide and sort, default properties of fields. Filters – Dimension, Data, Measure, Visual, Interactive, Data source, Context
Applying analytics – Sets, Parameters, Group, Calculated fields, Data Function, Text Function, Bins and Histogram, Sort, reference and trend line, Table calculation, Pareto Chart, Waterfall Chart
Module: III Dash boarding and data connection
Dashboard in tableau, working layout, Objects in dashboard, making interactive dashboard, action in dashboard, Dashboard for Mobile, Storyline – Case study
Modification to data connection, Edit data source, Union, Joins, Data blending, level of detail, Fixed LOD, Include LOD, Exclude LOD, Publish to Tableau Public
4. (CUDA2210) : Data Analytics for Decision Making (0-2-1)
Module: I Introduction to Data Analytics
Data type, Data Analytics process, exploratory data analysis (EDA), EDA – Graphical Technique, Data analytics conclusion and prediction
Module: II Statistics analysis and Business application
Introduction to Statistics, Statistical and non-statistical analysis, Major categories of statistics, Statistical analysis – population and sample, Statistical analysis process – Data distribution, dispersion, Histogram, Correlation and inferential statistics, Regression
Exercise – Based on case studies
Module: III Mathematical and scientific computation
Numpy basic – ndarray and basic arithmetic operation, Slicing, coy and view, Mathematical function of numpy,
Introduction to Scipy, Scipy sub package Integration and Optimization, Calculation of Eigenvalues, Eigenvector Scipy sub package – Statistics weave and IO
Practice project – Solving linear algebra using Scipy, perform CDF and PDF using Scipy
Note – Two projects to be submitted (including one practice project)
5. (CUDA2211): Natural Language Processing with Scikit Learn (0-1-1)
Module: 1 NLP Overview and Application
NLP Overview, NLP Application. NLP Libraries – SCIKIT, Extraction consideration, Scikit learn – model training and Grid search, Practice project – Analysing spam collection data or any other project, Demo assignment, Project for evaluation – Sentiment analysis using NLP
Gate Process for Project
Gate 0: Problem Identification
Gate 1: Data Collection
Gate 2: Model Development
Gate 3: Testing and Validation
Gate 4: Publication, Patent, Product
Project Covered -
link for Project dataset -
https://drive.google.com/drive/folders/1qIba8ZsKRL8KvVfjIyAubQYZuo5DnycL?usp=sharing
I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.
I am text block. Click edit button to change this text. Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut elit tellus, luctus nec ullamcorper mattis, pulvinar dapibus leo.