Machine Learning using Python

per person /

Free

Home Courses

Machine Learning using Python

Machine Learning using Python

Teacher

MANOJ KUMAR BEHERA

Category

Core Courses

Course Attendees

Still no participant

Course Reviews

Still no reviews

Course Name : Machine Learning using Python

Code(Credit) : CUTM1019(1-2-1)

Course Objectives

  • Understand the meaning, purpose, scope, stages, applications, and effects of ML.

  • Explore important packages of python, such as numpy, scipy, OpenCV and scikit-learn.

Learning Outcomes

  • Students will able to Create and incorporate ML solutions in their respective fields of study.

Course Syllabus

Module 1 – Application and Environmental-setup (12 hrs)

  • Applications of Machine Learning In different fields (Medical science, Agriculture, Automobile, mining and many more).

  • Supervised vs Unsupervised Learning based on problem Definition.

  • Understanding the problem and its possible solutions using IRIS datasets.

  • Python libraries suitable for Machine Learning(numpy, scipy, scikit-learn, opencv)

  • Environmental setup and Installation of important libraries.

Module 2 - Regression (8 hrs)

  • Linear Regression

  • Non-linear Regression

  • Model Evaluation in Regression

  • Evaluation Metrics in Regression Models

  • Multiple Linear Regression

  • Feature Reduction using PCA

  • Implementation of regression model on IRIS datasets.

Module 3 - Classification (24 hrs)

  • Defining Classification Problem with IRIS datasets.

  • Mathematical formulation of K-Nearest Neighbour Algorithm for binary classification.

  • Implementation of K-Nearest Neighbour Algorithm using sci-kit learn.

  • Classification using Decision tree.

  • Construction of  decision trees based on entropy.

  • Implementation of Decision Trees for Iris datasets .

  • Classification using Support Vector Machines.

  • SVM for Binary classification

  • Regulating different functional parameters of SVM using sci-kit learn.

  • SVM for multi class classification.

  • Implementation of SVM using Iris datasets .

  • Implementation of Model Evaluation Metrics using sci-kit learn and IRIS datasets.

Module 4 - Unsupervised Learning (12 hrs)

  • Defining clustering and its application in ML .

  • Mathematical formulation of K-Means Clustering.

  • Defining K value and its importance in K-Means Clustering.

  • Finding appropriate K value using elbow technique for a particular problem.

  • Implementation of K-Means clustering for IRIS datasets

Projects

  • To be defined based on respective study area of student.

References:

 

Text Book:

  1. Ethem Alpaydin, Introduction to Machine Learning, Second Edition, http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=12012.

Web Resource:

  1.  https://towardsdatascience.com/beginners-guide-to-machine-learning-with-python-b9ff35bc9c51

Session Plan

Session-4,5

 

Understanding the problem and its possible solutions using IRIS datasets.

https://www.youtube.com/watch?v=FLuqwQgSBDw

session-10,11

 

ML library in Python scikit-learn and its  functions.

https://www.youtube.com/watch?v=bwZ3Qiuj3i8

https://scikit-learn.org/stable/tutorial/basic/tutorial.html

Session-12

 

Defining student specific Project

Session-14

 

Non-linear Regression

https://www.youtube.com/watch?v=sKrDYxQ9vTU

Session-15

 

Model Evaluation

https://www.youtube.com/watch?v=c68JLu1Nfkw

Session-16

 

Evaluation Metrics in Regression Models

https://www.youtube.com/watch?v=iLfgZfRGisE

Session-17,18

 

Multiple Linear Regression

https://www.youtube.com/watch?v=dQNpSa-bq4M

Session-20

 

Implementation of regression model on IRIS datasets.

https://www.youtube.com/watch?v=hd1W4CyPX58

Session-21

 

Defining Classification Problem with IRIS datasets.

https://www.youtube.com/watch?v=Y17Y_8RK6pc

Session-22,23

 

Create the train/test set using scikit-learn using scikit-learn

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

Session-24,25

 

Confussion Matrix, Accuraccy, Sensitivity, specificity

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html

Session-26

 

Mathematical formulation of K-Nearest Neighbour Algorithm for binary classification.

https://www.youtube.com/watch?v=4HKqjENq9OU

Session-27,28

 

Implementation of K-Nearest Neighbour Algorithm using sci-kit learn.

https://www.youtube.com/watch?v=6kZ-OPLNcgE

Session-29,30

 

Classification using Decision tree.

https://www.youtube.com/watch?v=7VeUPuFGJHk

Session-31,32

 

Construction of  decision trees based on entropy.

https://www.youtube.com/watch?v=7VeUPuFGJHk

Session-33,34

 

Implementation of  Decision Tree using sci-kit learn

https://www.youtube.com/watch?v=PHxYNGo8NcI

Session-35,36

 

Classification using Support Vector Machines.

https://www.youtube.com/watch?v=Y6RRHw9uN9o

Session-39,40

 

Regulating different functional parameters of SVM using sci-kit learn.

https://www.youtube.com/watch?v=93AjE1YY5II

Session-41,42

 

SVM for multi class classification.

https://www.youtube.com/watch?v=kH6T_XL10-A

Session-43,44

 

 Implementation of Support Vector Machines.

https://www.youtube.com/watch?v=zEabrO9l1vg

Session-45,46

 

Defining clustering and its application in ML

https://www.youtube.com/watch?v=V-8E0KhNrI8

Session-49,50

 

Defining K value and its importance in K-Means Clustering.

https://www.youtube.com/watch?v=4b5d3muPQmA

Session-53,54

 

Finding appropriate K value using elbow technique for a particular problem.

https://www.youtube.com/watch?v=IEBsrUQ4eMc

Recent Comments

    Our Main Teachers

    MANOJ KUMAR BEHERA

    Asst. Prof. Dept of CSE
    VIEW PROFILE

    Manoj Kumar Behera, M. tech. in Computer Science, NIT Rourkela, Qualified GATE in 2008. His research area includes application of machine learning and image processing in the fields of smart agriculture and Bio-medical applications. He has published about 20 articles in many international journals and conferences.