Solid State Physics

Teacher

Dr. Saubhagyalaxmi Behera

Category

Core Courses

Course Attendees

Still no participant

Course Reviews

Still no reviews

Course Name : Solid State Physics

Code(Credit) : CUTM 1494(3-2-1)

Course Objectives

Basic understanding of symmetry, electronic and thermodynamic properties of solid state systems and their technological applications.

  • To impart knowledge of basic theories of the electronic structure of materials.
  • Students should learn how to understand physical behavior of solids and electronic devices.

Course Outcomes

COs Course outcomes Mapping COs with POs (High-3, Medium-2, Low-1)
CO1 Understand the elastic properties of solids and lattice vibration, magnetic properties of condensed matter and the optical properties of solids and the relation to their electronic properties. PO1-3, PO2-3
CO2 Develop the facility for problems associated with the solid state with respect to semi-conductor physics. PO2-3, PO5-3, PO9-1
CO3 Outline the importance of solid state physics in the modern society. PO7-2, PO9-1

Course Outline

Module I:                               (3 Hours Theory+4 Hours Practice+1 Hour Flipped Class)

Crystal Structure:

Amorphous and crystalline materials. Lattice translation vectors. Lattice with a basis – central and non-central elements, Unit cell, Miller indices, Reciprocal lattice. Types of lattices.    Brillouin zones, Diffraction of X-rays by crystals. Bragg’s law, Atomic and geometrical factor.

Practice 1:  crystal structure identification

Practice 2: Determination of specific heat of a solid

Module-II:                              (4 Hours Theory+4 Hours Practice+1 Hour Flipped Class)

Elementary Lattice Dynamics:
Lattice vibrations and phonons: Linear monoatomic lattice, Diatomic lattice Chains. Acoustical and optical Phonons. Qualitative description of the phonon spectrum in solids, Dulong and Petit’s Law, Einstein theory of specific heat of solids.

Practice -3:  Study of the Dispersion relation for “Mono-atomic Lattice”. Determination of the Cut-off frequency and Comparison with theory. (using lattice dynamics kit)

 

Practice -4:  To draw the B-H curve of Fe using solenoid & determine energy loss from   hysteresis.

Module III:                            (5 Hours Theory+8 Hours Practice+1 Hour Flipped Class)

Magnetic Properties of Matter:  

Dia-, para-, ferri- and ferromagnetic materials. Classical Langevin theory of diamagnetic domains, Classical theory of paramagnetism, Quantum mechanical treatment of paramagnetism. Curie’s law, Weiss’s theory of ferromagnetism and ferromagnetic domains, Discussion of B-H curve. Hysteresis and energy Loss.

Practice 5: Measurement of magnetoresistance [To measure magnetoresistance of a thin (0.5 mm) sample of p-doped (or n-doped) Germanium as a function of magnetic field for 3 different sample current.]

Practice 6: Curie temperature of ferromagnetism.

 Practice 7:  Determination of magnetic susceptibility paramagnetic substance by Quinck’s method

Practice 8: Curie Weiss law of ferroelectric material.

Module-IV:                            (5 Hours Theory+4 Hours Practice+1 Hour Flipped Class)

Dielectric Properties of Materials:

Dielectric properties of materials: Polarization. Local electric field at an atom.,  Depolarization field.,  Electric susceptibility.,  Polarizability.,  Clausius-Mosotti equation.,  Classical theory of electric polarizability.,   Normal and anomalous dispersion,  Cauchy and Sellmeir relations.  Langevin-Debye equation, Complex dielectric constant. Optical phenomena.

Practice 9:  Determination of dielectric constant of a material.

Practice 10:  To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to 150 0C) and to determine its band gap.

Module-V: (4 Hours Theory+1 Hour Flipped Class).

Superconductivity:      

Experimental results. Critical temperature. Critical magnetic field, Meissner effect, Type I and type II superconductors, London’s equation and penetration depth.  Isotope effect, Idea of   BCS theory(No derivation).

Module VI:                            (6 Hours Theory+4 Hours Practice+2 Hour Flipped Class).

Elementary Band Theory:      

Elementary band theory, Kronig Penny model, Band gap.  Classification of materials: conductor, semiconductor and insulator, Semiconductors:  intrinsic and extrinsic semiconductor, Conductivity of semiconductor, mobility, Hall Effect, Direct and indirect band gap semiconductors and their behavior to external field.

Practice 11: Hall Effect

 Practice 12:  I-V Characteristics of a solar cell

 Module-VII:                                      (3 Hours Theory+5 Hour Flipped Class).

Semiconductor devices.

Semiconductor materials for solar cell, Semiconductor properties, Transport properties, optical properties, Basic equations of device physics, Semiconductor materials for optoelectronic devices, Photodiode.

Total theory 30 hours, total practice 24 hours and total flipped class 12 hours.

Text Books:

  1. Solid State Physics, M.A. Wahab, 2011, Narosa Publications
  2. Solid State Physics, S .O.Pilai
  3. Solid State Physics, Gupta Kumar

Reference Books:

  1. Introduction to Solid State Physics, Charles Kittel, 8th Edition, 2004, Wiley India Pvt. Ltd.
  2. Elements of Solid State Physics, J.P. Srivastava, 4th Edition, 2015, Prentice-Hall of India
  3. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill

Session Plan

Session 1

Solids: Amorphous and crystalline materials. Lattice translation vectors. Lattice with a basis – central and non-central elements

link 1 https://youtu.be/NYVSI83KiKU

link 2 https://youtu.be/BjVTdZ_htu8

Session 2

Unit cell. Miller indices. Reciprocal lattice. Types of lattices.

Link  https://youtu.be/iyJvxOLq02s

Session 3

Brillouin zones. ,  Diffraction of X-rays by crystals

https://www.slideshare.net/KishanKasundra1/xrd-xray-diffraction-presentation

Session 4

Flip class- 1

Bragg’s Law,  Atomic and geometrical Factor

link 1 https://youtu.be/06Y8c3XXNnA

Session 5

Practice -1 (2hrs)

Crystal Structure Identification

link 1 http://vlab.amrita.edu/?sub=1&brch=282&sim=370&cnt=1

Session 6

Practice- 2 (2hrs)

Determination of specific heat of a solid

Link 1https://byjus.com/physics/to-determine-specific-heat-capacity-of-given-solid-by-method-of-mixtures/

Session 7

Session 9

Acoustical and optical Phonons.

Link 1 https://youtu.be/_TbVdJ0Xguklink

link 2 https://slideplayer.com/slide/6181589/

Session 10

Session 11

Flip class - 2   

Dulong and Petit’s Law, Einstein theory of specific heat of solids

link 1 https://youtu.be/UhRhONXTVh8

link 2 https://youtu.be/bmrt6T-R62s

Session 12

Practice- 3  (2hrs)   

Study of the Dispersion relation for “Mono-atomic Lattice”. Determination of the Cut-off frequency and Comparison with theory. (using lattice dynamics kit)

link 1http://www.mmamc.edu.np/files/campus_download/052fd28476d07ba65c69be6b37152e1c.pdf

Session 13

Practice- 4  (2hrs)

To draw the B-H curve of Fe using solenoid & determine energy loss from   hysteresis.

link 1 http://link 1 http://vlab.amrita.edu/?sub=1&brch=282&sim=1507&cnt=1

Session 15

Session 16

Classical theory of paramagnetism

link 1 https://youtu.be/4j_cLKjIIdM

Session 17

Quantum mechanical treatment of paramagnetism. Curie’s law

Link 1 https://youtu.be/p-ejEqZpfSU

link 2 http://stxavierstn.edu.in/ict_ppts/phy/anavenus/9.pdf (PPT)

Session 18

Weiss’s theory of ferromagnetism and ferromagnetic Domains.

Link 1 https://youtu.be/Bb2EZezvYMs

Link 2  https://youtu.be/cWbWu9lfFEE

link 3 http://slideplayer.com/slide/15285802/

Session 19

Flip class- 3

Discussion of B-H Curve. Hysteresis and energy loss.

Link 1  https://youtu.be/gPYOiqBT9VY

Link 2 https://youtu.be/jYJ00IqUNTo

Session 20

Practice -5 (2hrs)

Measurement of magnetoresistance [To measure magnetoresistance of a thin (0.5 mm) sample of p-doped (or n-doped) Germanium as a function of magnetic field for 3 different sample current.]

link 1https://www.iiserkol.ac.in/~ph324/ExptManuals/Magnetoesistance.pdf

Session 21

Practice- 6 (2hrs)

Curie temperature of ferromagnetism

link 1-http://youtu.be

Session 22

Practice -7 (2hrs)

Determination of paramagnetic suceptibility-quinke's method

link 1 https://youtu.be/yzgdq8uUfO4

link 2-https://www.iiserkol.ac.in/~ph324/ExptManuals/quincke's%20manual.pdf

Session 23

Practice -8 (2hrs)

Curie Weiss law of ferroelectric material.

link-1https://www.youtube.com/watch?v=jk6b2N6rqis

Session 24

Dielectric properties of materials: Polarization, Local electric field at an atom.

Link 1 https://youtu.be/ncSPdMDAp9k

Link 2 https://youtu.be/BvXxFs48NoU

link 3 http://www.authorstream.com/Presentation/ganeshbilla-1217461-dielectric-properties/ (PPT)

Session 25

Session 26

Clausius-Mosotti equation,  Classical theory of electric polarizability.

link 1 https://youtu.be/sdHpg7PFHhY

Link 2 https://youtu.be/OZchTd4fxo0

link 3  https://nnf.mit.edu/sites/default/files/documents/sr-2007-10.pdf(PPT)

Session 27

Normal and anomalous Dispersion

Link 1 https://youtu.be/vzBnsG2rKWs

Link 2 https://youtu.be/DSzXTQnx-_E

Session 28

Cauchy and Sellmeir relations.

link 1 https://youtu.be/gPYOiqBT9VY

link 2 https://youtu.be/dynuBi-Lq58

Session 29

Flip class- 4   

Langevin-Debye equation, Complex dielectric constant, Optical phenomena 

Link 1 https://youtu.be/vSTgbBs5_3Y

Link 2 https://youtu.be/II83z15qj1Y

Link 3 https://youtu.be/AhqIaVRZlic

Session 30

Practice -9 (2hrs)

Determination of dielectric constant for a given material

link 1 https://youtu.be/4djiklgZtU8

Session 31

Practice -10 (2hrs)

To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to 150 oC) and to determine its band gap.

link 1 http://vlab.amrita.edu/?sub=1&brch=282&sim=1512&cnt=1

Session 32

Experimental results, Critical temperature, Critical magnetic field, Meissner effect.

link 1 https://youtu.be/-9pSnK8D7g4

link 2 https://youtu.be/-XcGnbTLfTg

link 3 https://youtu.be/o_rPB20qbyA

link 4 https://www.slideshare.net/Preetshah1212/superconductors-75467343

Session 34

London’s equation and penetration depth.

link 1 https://youtu.be/mcv6UhU-3p8

link 2 https://youtu.be/bnyB-PInFA4

link 3 https://slideplayer.com/slide/13058300/

Session 35

Session 36

Flip Class-  5   

Numericals on superconductivity, Aplications of superconductivity

Link.1 https://youtu.be/zx6HZ7D-v88

Session 38

Session 39

Band gap,  Classification of materials as  conductor, semiconductor and insulator

link 1 https://youtu.be/UVIYqLYgM6k

link 2 https://youtu.be/UVIYqLYgM6k

link 3 https://slideplayer.com/slide/13144631/

Session 40

Semiconductors, intrinsic and extrinsic semiconductor,

link 1 https://youtu.be/CjAVfW_6juw

link 2 https://youtu.be/3mJmOr21tdw

link 3 https://www.slideshare.net/brkaa2002/semiconductors-49286501

Session 41

Conductivity of semiconductor, mobility,  Measurement of conductivity

link 1https://youtu.be/uhELpm8bSTc

link 2 https://youtu.be/L4H3_Yt63iw

link 3 https://www.slideshare.net/luyenkimnet/lecture-15

Session 43

Flip class - 6

Direct and indirect band gap semiconductors and their behavior to external field.

link 1 https://youtu.be/x3LOTaEVLak

link 2 https://youtu.be/l0txogFnT-c

Session 44

Session 45

Session 46

Flip class - 7 

Applications of direct band gap semiconductor.

link 1 https://youtu.be/AG3yO9JKRag

Session 50

Flip class -8 

Transport properties

link 1  https://youtu.be/z-MJD9j1vpc

link 2 https://youtu.be/pgFDx8NtrFE

Session 51

Flip class -9 (2hrs)  

Optical properties, Basic equations of device physics

link 1 https://youtu.be/sjDlJoCYXj8

link2 https://youtu.be/fwIrBwzLUYo

link 3  https://youtu.be/fwIrBwzLUYo

Session 52

Flip class- 10 (2hrs)  

Semiconductor materials for optoelectronic devices, Photodiodes .

link 1  https://youtu.be/QFiSg4PU-DU

 

link 2 https://youtu.be/ROV9xtKkMsw

link 3  https://youtu.be/2a7BEMLmnFo

Case Studies

Our Main Teachers