Still no participant
Still no reviews
Basic understanding of symmetry, electronic and thermodynamic properties of solid state systems and their technological applications.
COs | Course outcomes | Mapping COs with POs (High-3, Medium-2, Low-1) |
CO1 | Understand the elastic properties of solids and lattice vibration, magnetic properties of condensed matter and the optical properties of solids and the relation to their electronic properties. | PO1-3, PO2-3 |
CO2 | Develop the facility for problems associated with the solid state with respect to semi-conductor physics. | PO2-3, PO5-3, PO9-1 |
CO3 | Outline the importance of solid state physics in the modern society. | PO7-2, PO9-1 |
Course Outline
Module I: (3 Hours Theory+4 Hours Practice+1 Hour Flipped Class)
Crystal Structure:
Amorphous and crystalline materials. Lattice translation vectors. Lattice with a basis – central and non-central elements, Unit cell, Miller indices, Reciprocal lattice. Types of lattices. Brillouin zones, Diffraction of X-rays by crystals. Bragg’s law, Atomic and geometrical factor.
Practice 1: crystal structure identification
Practice 2: Determination of specific heat of a solid
Module-II: (4 Hours Theory+4 Hours Practice+1 Hour Flipped Class)
Elementary Lattice Dynamics:
Lattice vibrations and phonons: Linear monoatomic lattice, Diatomic lattice Chains. Acoustical and optical Phonons. Qualitative description of the phonon spectrum in solids, Dulong and Petit’s Law, Einstein theory of specific heat of solids.
Practice -3: Study of the Dispersion relation for “Mono-atomic Lattice”. Determination of the Cut-off frequency and Comparison with theory. (using lattice dynamics kit)
Practice -4: To draw the B-H curve of Fe using solenoid & determine energy loss from hysteresis.
Module III: (5 Hours Theory+8 Hours Practice+1 Hour Flipped Class)
Magnetic Properties of Matter:
Dia-, para-, ferri- and ferromagnetic materials. Classical Langevin theory of diamagnetic domains, Classical theory of paramagnetism, Quantum mechanical treatment of paramagnetism. Curie’s law, Weiss’s theory of ferromagnetism and ferromagnetic domains, Discussion of B-H curve. Hysteresis and energy Loss.
Practice 5: Measurement of magnetoresistance [To measure magnetoresistance of a thin (0.5 mm) sample of p-doped (or n-doped) Germanium as a function of magnetic field for 3 different sample current.]
Practice 6: Curie temperature of ferromagnetism.
Practice 7: Determination of magnetic susceptibility paramagnetic substance by Quinck’s method
Practice 8: Curie Weiss law of ferroelectric material.
Module-IV: (5 Hours Theory+4 Hours Practice+1 Hour Flipped Class)
Dielectric Properties of Materials:
Dielectric properties of materials: Polarization. Local electric field at an atom., Depolarization field., Electric susceptibility., Polarizability., Clausius-Mosotti equation., Classical theory of electric polarizability., Normal and anomalous dispersion, Cauchy and Sellmeir relations. Langevin-Debye equation, Complex dielectric constant. Optical phenomena.
Practice 9: Determination of dielectric constant of a material.
Practice 10: To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to 150 0C) and to determine its band gap.
Module-V: (4 Hours Theory+1 Hour Flipped Class).
Superconductivity:
Experimental results. Critical temperature. Critical magnetic field, Meissner effect, Type I and type II superconductors, London’s equation and penetration depth. Isotope effect, Idea of BCS theory(No derivation).
Module VI: (6 Hours Theory+4 Hours Practice+2 Hour Flipped Class).
Elementary Band Theory:
Elementary band theory, Kronig Penny model, Band gap. Classification of materials: conductor, semiconductor and insulator, Semiconductors: intrinsic and extrinsic semiconductor, Conductivity of semiconductor, mobility, Hall Effect, Direct and indirect band gap semiconductors and their behavior to external field.
Practice 11: Hall Effect
Practice 12: I-V Characteristics of a solar cell
Module-VII: (3 Hours Theory+5 Hour Flipped Class).
Semiconductor devices.
Semiconductor materials for solar cell, Semiconductor properties, Transport properties, optical properties, Basic equations of device physics, Semiconductor materials for optoelectronic devices, Photodiode.
Total theory 30 hours, total practice 24 hours and total flipped class 12 hours.
Text Books:
Reference Books:
Solids: Amorphous and crystalline materials. Lattice translation vectors. Lattice with a basis – central and non-central elements
link 1 https://youtu.be/NYVSI83KiKU
link 2 https://youtu.be/BjVTdZ_htu8
Unit cell. Miller indices. Reciprocal lattice. Types of lattices.
Brillouin zones. , Diffraction of X-rays by crystals
https://www.slideshare.net/KishanKasundra1/xrd-xray-diffraction-presentation
Practice -1 (2hrs)
Crystal Structure Identification
Practice- 2 (2hrs)
Determination of specific heat of a solid
Link 1https://byjus.com/physics/to-determine-specific-heat-capacity-of-given-solid-by-method-of-mixtures/
Lattice vibrations and phonons: Linear monoatomic lattice
Link 1 https://www.youtube.com/watch?v=M4WQs_U1nmU
Qualitative description of the phonon spectrum in solids.
Link 1 https://youtu.be/SEUrum2Fl-0?list=PLP6oHpK3pl6Mv5jdKwtduASkI6is0tC1q
Link 2http://uw.physics.wisc.edu/~himpsel/551/Lectures/Phonons.ppt
Flip class - 2
Dulong and Petit’s Law, Einstein theory of specific heat of solids
link 1 https://youtu.be/UhRhONXTVh8
link 2 https://youtu.be/bmrt6T-R62s
Practice- 3 (2hrs)
Study of the Dispersion relation for “Mono-atomic Lattice”. Determination of the Cut-off frequency and Comparison with theory. (using lattice dynamics kit)
link 1http://www.mmamc.edu.np/files/campus_download/052fd28476d07ba65c69be6b37152e1c.pdf
Practice- 4 (2hrs)
To draw the B-H curve of Fe using solenoid & determine energy loss from hysteresis.
link 1 http://link 1 http://vlab.amrita.edu/?sub=1&brch=282&sim=1507&cnt=1
Dia-, para-, ferri- and ferromagnetic materials.
link 1 https://youtu.be/-nqgbqN1e64
link 2 https://youtu.be/GXIP6_LX2Ss
Classical Langevin theory of diamagnetic domains
link 1 https://youtu.be/kF5Mu_v2IQE
link 2 https://youtu.be/gJrmXcBKG4A
link 3 http://fac.ksu.edu.sa/sites/default/files/l3_magnetism.pdf (PPT)
Quantum mechanical treatment of paramagnetism. Curie’s law
Link 1 https://youtu.be/p-ejEqZpfSU
link 2 http://stxavierstn.edu.in/ict_ppts/phy/anavenus/9.pdf (PPT)
Weiss’s theory of ferromagnetism and ferromagnetic Domains.
Link 1 https://youtu.be/Bb2EZezvYMs
Link 2 https://youtu.be/cWbWu9lfFEE
Flip class- 3
Discussion of B-H Curve. Hysteresis and energy loss.
Link 1 https://youtu.be/gPYOiqBT9VY
Link 2 https://youtu.be/jYJ00IqUNTo
Practice -5 (2hrs)
Measurement of magnetoresistance [To measure magnetoresistance of a thin (0.5 mm) sample of p-doped (or n-doped) Germanium as a function of magnetic field for 3 different sample current.]
link 1https://www.iiserkol.ac.in/~ph324/ExptManuals/Magnetoesistance.pdf
Practice -7 (2hrs)
Determination of paramagnetic suceptibility-quinke's method
link 1 https://youtu.be/yzgdq8uUfO4
link 2-https://www.iiserkol.ac.in/~ph324/ExptManuals/quincke's%20manual.pdf
Practice -8 (2hrs)
Curie Weiss law of ferroelectric material.
Dielectric properties of materials: Polarization, Local electric field at an atom.
Link 1 https://youtu.be/ncSPdMDAp9k
Link 2 https://youtu.be/BvXxFs48NoU
link 3 http://www.authorstream.com/Presentation/ganeshbilla-1217461-dielectric-properties/ (PPT)
Depolarization field, Electric susceptibility, Polarizability
Link 1 https://youtu.be/TuvLv6SBO5s
link 2http://www.idc-online.com/technical_references/pdfs/chemical_engineering/Polarizability.pdf (PPT)
Clausius-Mosotti equation, Classical theory of electric polarizability.
link 1 https://youtu.be/sdHpg7PFHhY
Link 2 https://youtu.be/OZchTd4fxo0
link 3 https://nnf.mit.edu/sites/default/files/documents/sr-2007-10.pdf(PPT)
Normal and anomalous Dispersion
Link 1 https://youtu.be/vzBnsG2rKWs
Link 2 https://youtu.be/DSzXTQnx-_E
Cauchy and Sellmeir relations.
link 1 https://youtu.be/gPYOiqBT9VY
link 2 https://youtu.be/dynuBi-Lq58
Flip class- 4
Langevin-Debye equation, Complex dielectric constant, Optical phenomena
Link 1 https://youtu.be/vSTgbBs5_3Y
Link 2 https://youtu.be/II83z15qj1Y
Link 3 https://youtu.be/AhqIaVRZlic
Practice -9 (2hrs)
Determination of dielectric constant for a given material
link 1 https://youtu.be/4djiklgZtU8
Practice -10 (2hrs)
To measure the resistivity of a semiconductor (Ge) with temperature by four-probe method (room temperature to 150 oC) and to determine its band gap.
link 1 http://vlab.amrita.edu/?sub=1&brch=282&sim=1512&cnt=1
Experimental results, Critical temperature, Critical magnetic field, Meissner effect.
link 1 https://youtu.be/-9pSnK8D7g4
link 2 https://youtu.be/-XcGnbTLfTg
link 3 https://youtu.be/o_rPB20qbyA
link 4 https://www.slideshare.net/Preetshah1212/superconductors-75467343
Type I and type II superconductors
link 1 https://youtu.be/vBIYTx8v2RM
link 2 https://youtu.be/Jev65mdapPI
link 3 https://www.slideshare.net/Preetshah1212/superconductors-75467343
London’s equation and penetration depth.
link 1 https://youtu.be/mcv6UhU-3p8
link 2 https://youtu.be/bnyB-PInFA4
Isotope effect, Idea of BCS theory
link 1 https://youtu.be/QYFPW0mRwPw
link 2 https://youtu.be/Q1WBe_LX1u8
link 3 https://www.pks.mpg.de/~ieremin/teaching/wroclaw1.pdf (PPT)
Flip Class- 5
Numericals on superconductivity, Aplications of superconductivity
Link.1 https://youtu.be/zx6HZ7D-v88
Elementary band theory of solids
link-1 https://youtu.be/aF5RJ4e9hdk
link 2 https://youtu.be/ots5zxbrlUk
link 3 https://www.slideshare.net/mahishine007/band-theory-of-solids
Band gap, Classification of materials as conductor, semiconductor and insulator
link 1 https://youtu.be/UVIYqLYgM6k
link 2 https://youtu.be/UVIYqLYgM6k
Semiconductors, intrinsic and extrinsic semiconductor,
link 1 https://youtu.be/CjAVfW_6juw
link 2 https://youtu.be/3mJmOr21tdw
link 3 https://www.slideshare.net/brkaa2002/semiconductors-49286501
Conductivity of semiconductor, mobility, Measurement of conductivity
link 1https://youtu.be/uhELpm8bSTc
link 2 https://youtu.be/L4H3_Yt63iw
Hall effect
link 1 https://youtu.be/wpAA3qeOYiI
link 2 https://youtu.be/Ip43wws6FEw
link 3 https://www.slideshare.net/harshsrigh/hall-effect-45275719
Flip class - 6
Direct and indirect band gap semiconductors and their behavior to external field.
link 1 https://youtu.be/x3LOTaEVLak
link 2 https://youtu.be/l0txogFnT-c
Practice -12 (2hrs)
Hall effect
Link 1 https://youtu.be/_AwjbHzwWLo
link 2 https://www.slideshare.net/harshsrigh/hall-effect-45275719
Practice 12:
I-V Characteristics of a solar cell
link 1https://www.iitr.ac.in/departments/PH/uploads/Teaching%20Laboratory/Thermal/2.%20solar%20cell.pdf
Semiconductor devices
link 1 https://youtu.be/YrPseVpO9uM
link 2 https://youtu.be/DCjZQZZX0Yg
link 3 https://www.slideshare.net/abhaagrawal583/semiconductor-devices-58406616
Semiconductor materials for solar cell
link 1 https://youtu.be/6f_8lWI_Ds4
link 2 https://youtu.be/XPKK55PlyIw
link 3 https://www.slideshare.net/SenthilKumar1123/solar-cell-materials-me
Semiconductor properties
link 1 https://youtu.be/82RMA7537bM
link 2 https://youtu.be/z-MJD9j1vpc
link 3 https://www.slideshare.net/mianusman11/semiconductors-46337991
Flip class -8
Transport properties
link 1 https://youtu.be/z-MJD9j1vpc
link 2 https://youtu.be/pgFDx8NtrFE
Flip class -9 (2hrs)
Optical properties, Basic equations of device physics
link 1 https://youtu.be/sjDlJoCYXj8
link2 https://youtu.be/fwIrBwzLUYo
link 3 https://youtu.be/fwIrBwzLUYo
Flip class- 10 (2hrs)
Semiconductor materials for optoelectronic devices, Photodiodes .
link 1 https://youtu.be/QFiSg4PU-DU
link 2 https://youtu.be/ROV9xtKkMsw
link 3 https://youtu.be/2a7BEMLmnFo