1.3 NETWORK TYPES

After defining networks in the previous section and discussing their physical structures, we need to discuss different types of networks we encounter in the world today. The criteria of distinguishing one type of network from another is difficult and sometimes confusing. We use a few criteria such as size, geographical coverage, and ownership to make this distinction. After discussing two types of networks, LANs and WANs, we define switching, which is used to connect networks to form an internetwork (a network of networks).

1.3.1 Local Area Network

A **local area network** (LAN) is usually privately owned and connects some hosts in a single office, building, or campus. Depending on the needs of an organization, a LAN can be as simple as two PCs and a printer in someone's home office, or it can extend throughout a company and include audio and video devices. Each host in a LAN has an identifier, an address, that uniquely defines the host in the LAN. A packet sent by a host to another host carries both the source host's and the destination host's addresses.

In the past, all hosts in a network were connected through a common cable, which meant that a packet sent from one host to another was received by all hosts. The intended recipient kept the packet; the others dropped the packet. Today, most LANs use a smart connecting switch, which is able to recognize the destination address of the packet and guide the packet to its destination without sending it to all other hosts. The switch alleviates the traffic in the LAN and allows more than one pair to communicate with each other at the same time if there is no common source and destination among them. Note that the above definition of a LAN does not define the minimum or maximum number of hosts in a LAN. Figure 1.8 shows a LAN using either a common cable or a switch.

b. LAN with a switch (today)

When LANs were used in isolation (which is rare today), they were designed to allow resources to be shared between the hosts. As we will see shortly, LANs today are connected to each other and to WANs (discussed next) to create communication at a wider level.

1.3.2 Wide Area Network

A wide area network (WAN) is also an interconnection of devices capable of communication. However, there are some differences between a LAN and a WAN. A LAN is normally limited in size, spanning an office, a building, or a campus; a WAN has a wider geographical span, spanning a town, a state, a country, or even the world. A LAN interconnects hosts; a WAN interconnects connecting devices such as switches, routers, or modems. A LAN is normally privately owned by the organization that uses it; a WAN is normally created and run by communication companies and leased by an organization that uses it. We see two distinct examples of WANs today: point-to-point WANs and switched WANs.

Point-to-Point WAN

A point-to-point WAN is a network that connects two communicating devices through a transmission media (cable or air). We will see examples of these WANs when we discuss how to connect the networks to one another. Figure 1.9 shows an example of a point-to-point WAN.

Switched WAN

A switched WAN is a network with more than two ends. A switched WAN, as we will see shortly, is used in the backbone of global communication today. We can say that a switched WAN is a combination of several point-to-point WANs that are connected by switches. Figure 1.10 shows an example of a switched WAN.

Internetwork

Today, it is very rare to see a LAN or a WAN in isolation; they are connected to one another. When two or more networks are connected, they make an **internetwork**, or **internet**. As an example, assume that an organization has two offices, one on the east coast and the other on the west coast. Each office has a LAN that allows all employees in the office to communicate with each other. To make the communication between employees at different offices possible, the management leases a point-to-point dedicated WAN from a service provider, such as a telephone company, and connects the two LANs. Now the company has an internetwork, or a private internet (with lowercase *i*). Communication between offices is now possible. Fi

When a host in the west coast office sends a message to another host in the same office, the router blocks the message, but the switch directs the message to the destination. On the other hand, when a host on the west coast sends a message to a host on the east coast, router R1 routes the packet to router R2, and the packet reaches the destination.

Figure 1.12 (see next page) shows another internet with several LANs and WANs connected. One of the WANs is a switched WAN with four switches.

1.3.3 Switching

An internet is a **switched network** in which a switch connects at least two links together. A switch needs to forward data from a network to another network when required. The two most common types of switched networks are circuit-switched and packet-switched networks. We discuss both next.

Circuit-Switched Network

In a **circuit-switched network**, a dedicated connection, called a circuit, is always available between the two end systems; the switch can only make it active or inactive. Figure 1.13 shows a very simple switched network that connects four telephones to each end. We have used telephone sets instead of computers as an end system because circuit switching was very common in telephone networks in the past, although part of the telephone network today is a packet-switched network.

In Figure 1.13, the four telephones at each side are connected to a switch. The switch connects a telephone set at one side to a telephone set at the other side. The thick

line connecting two switches is a high-capacity communication line that can handle four voice communications at the same time; the capacity can be shared between all pairs of telephone sets. The switches used in this example have forwarding tasks but no storing capability.

Let us look at two cases. In the first case, all telephone sets are busy; four people at one site are talking with four people at the other site; the capacity of the thick line is fully used. In the second case, only one telephone set at one side is connected to a telephone set at the other side; only one-fourth of the capacity of the thick line is used. This means that a circuit-switched network is efficient only when it is working at its full capacity; most of the time, it is inefficient because it is working at partial capacity. The reason that we need to make the capacity of the thick line four times the capacity of each voice line is that we do not want communication to fail when all telephone sets at one side want to be connected with all telephone sets at the other side.

Packet-Switched Network

In a computer network, the communication between the two ends is done in blocks of data called **packets.** In other words, instead of the continuous communication we see between two telephone sets when they are being used, we see the exchange of individual data packets between the two computers. This allows us to make the switches function for both storing and forwarding because a packet is an independent entity that can be stored and sent later. Figure 1.14 shows a small packet-switched network that connects four computers at one site to four computers at the other site.

A router in a packet-switched network has a queue that can store and forward the packet. Now assume that the capacity of the thick line is only twice the capacity of the data line connecting the computers to the routers. If only two computers (one at each site) need to communicate with each other, there is no waiting for the packets. However, if packets arrive at one router when the thick line is already working at its full capacity, the packets should be stored and forwarded in the order they arrived. The two simple examples show that a packet-switched network is more efficient than a circuit-switched network, but the packets may encounter some delays.

In this book, we mostly discuss packet-switched networks. In Chapter 18, we discuss packet-switched networks in more detail and discuss the performance of these networks.

1.3.4 The Internet

As we discussed before, an internet (note the lowercase i) is two or more networks that can communicate with each other. The most notable internet is called the **Internet** (uppercase I), and is composed of thousands of interconnected networks. Figure 1.15 shows a conceptual (not geographical) view of the Internet.

The figure shows the Internet as several backbones, provider networks, and customer networks. At the top level, the *backbones* are large networks owned by some communication companies such as Sprint, Verizon (MCI), AT&T, and NTT. The backbone networks are connected through some complex switching systems, called *peering points*. At the second level, there are smaller networks, called *provider networks*, that use the services of the backbones for a fee. The provider networks are connected to backbones and sometimes to other provider networks. The *customer networks* are

Figure 1.15 The Internet today

networks at the edge of the Internet that actually use the services provided by the Internet. They pay fees to provider networks for receiving services.

Backbones and provider networks are also called **Internet Service Providers** (**ISPs**). The backbones are often referred to as *international ISPs*; the provider networks are often referred to as *national* or *regional ISPs*.

1.3.5 Accessing the Internet

The Internet today is an internetwork that allows any user to become part of it. The user, however, needs to be physically connected to an ISP. The physical connection is normally done through a point-to-point WAN. In this section, we briefly describe how this can happen, but we postpone the technical details of the connection until Chapters 14 and 16.

Using Telephone Networks

Today most residences and small businesses have telephone service, which means they are connected to a telephone network. Since most telephone networks have already connected themselves to the Internet, one option for residences and small businesses to connect to the Internet is to change the voice line between the residence or business and the telephone center to a point-to-point WAN. This can be done in two ways.

Dial-up service. The first solution is to add to the telephone line a modem that converts data to voice. The software installed on the computer dials the ISP and imitates making a telephone connection. Unfortunately, the dial-up service is