PRODUCTION FUNCTION IN THE LONG-RUN

Dr Bibhunandini Das

PRODUCTION FUNCTION

- Relationship between the amount of input required and the amount of output that can be obtained- Production function
- Specifies the maximum output that can be produced with a given quantity of inputs

RETURNS TO SCALE

- Diminishing returns and marginal products refer to the response of output to an increase of a single input when all other inputs are held constant
- Changing all factors of production-changing scale
- Effects of increasing all inputs- returns to scale

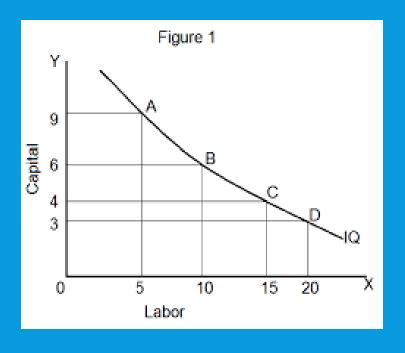
ISOQUANT

- Also known as equal-product curve
- Represents all those input combinations which are capable of producing the same level of output

ISOQUANT

Factor Combination	Labour	Capital
А	1	12
В	2	8
С	3	5
D	4	3
E	5	2

ISOQUANT



MARGINAL RATE OF TECHNICAL SUBSTITUTION

- The rate at which the producer is ready to exchange one factor for another-Marginal Rate of Technical Substitution (MRTS)
- Marginal Rate of Technical Substitution declines

PRODUCT LINES

- A product line shows that movement from one isoquant to another as both factors or a single factor changes
- A product line is drawn independently of the prices of factors of production
- The product line describes the technically possible alternative paths of expanding output
- The product line passes through the origin if all factors are variable

PRODUCT LINES

• If only one factor is variable, keeping other factors constant- the product line is a straight line parallel to the axis of the variable factor.

EFFECTS OF RETURNS TO SCALE

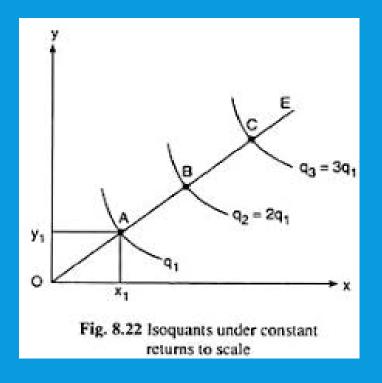
- Constant returns to scale
- Increasing returns to scale
- Decreasing returns to scale

CONSTANT RETURNS TO SCALE

- A case where a change in all inputs leads to a proportional change in output
- Example- if a labour, land, capital, and other inputs are doubled; then output would also be doubled
- Handicraft industries usually show constant returns

CONSTANT RETURNS TO SCALE

Labour	Capital	Output
10	10	100
20	20	200

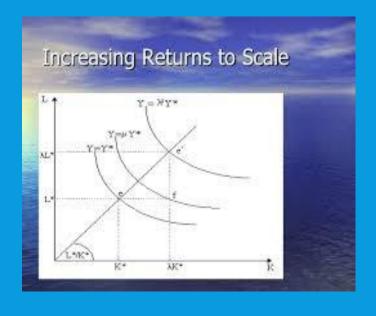


INCREASING RETURNS TO SCALE

- Increasing returns/ economies of scale
- When an increase in all inputs leads to a more than proportional increase in the level of output
- If labour, land, capital and other inputs are increased 10 per cent-output will increase more than 10 per cent

INCREASING RETURNS TO SCALE

Labour	Capital	Output
10	10	100
15	15	200

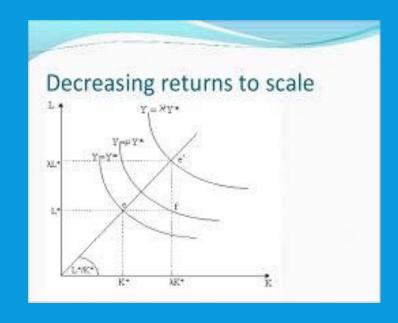


DECREASING RETURNS TO SCALE

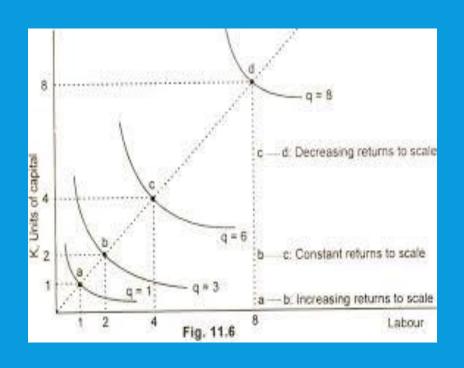
- Increase in all factors leads to a less than proportionate increase in outputs
- If labour, capital and other inputs increase 15 per cent- increase in output is less than 15 percent

DECREASING RETURNS TO SCALE

Labour	Capital	Output
10	10	100
25	25	200



RETURNS TO SCALE IN ONE DIAGRAM



REASONS OF INCREASING RETURNS TO SCALE

- Indivisibility of Factors
- Greater possibility of specialisation of Labour and capital

DIMINISHING RETURNS TO SCALE

Diseconomies of scale

EXAMPLE

- A firm starts from an initial level of inputs and output
- $X_0 = f(L, K)$
- Increase all the factors by the same proportion m clearly obtain a new level of output
- X* higher than the original level X_o
- $X^* = f(mL, mK)$

EXAMPLE

- If X^* increases by the same proportion m as the inputs- constant returns to scale
- If X^* increases less than proportionally with the increase in the factors- decreasing returns to scale
- If X^* increases more than proportionally with the increase in the factors-increasing returns to scale

RETURNS TO SCALE AND HOMOGENEITY OF THE PRODUCTION FUNCTION

- Suppose we increase both factors $X_0 = f(L, K)$ by the same proportion m and we observe the resulting new level of output \textbf{X}^*
- X* = f(mL, mK)
- If m can be factored out, then the new level of output X^* can be expressed as a function of m (to any power) and the initial level of output
- $X^* = m^a f(L, K)$
- Or $X^* = m^a X_o$ (the production function is called homogeneous)

RETURNS TO SCALE AND HOMOGENEITY OF THE PRODUCTION FUNCTION

- If m cannot be factored out, the production function is non-homogeneous
- The power a of m is called the degree of homogeneity of the function and is a measure of the returns to scale
- If a = 1, we have constant returns to scale
- If a<1, we have decreasing returns to scale
- If a>1, we have increasing returns to scale