
Drug formulation in aquaculture

Introduction

- **Drug formulation**: It is the processes in which different chemical substances i.e., active chemical substances will combined together to produce a drug compound.
- Drug design: It is the process of producing or invention of novel and/ or new medical product, the design of this new product completely based on the knowledge of biological target.
- **Drug:** a chemical substance used in the treatment, cure, prevention, or used to enhance physical or mental well-being.

- Drug formulation can affect the absorption of drug in two way:
- 1. Rate at which the drug goes into solution (dissolution), or
- 2. Rate of absorption of the drug across biological membranes.
- Absorption of drug: Movement of drugs from Gastrointestinal tract(GIT) to Systemic circulation(SC) or blood.
- **Dissolution:** It is the process in which a drug form a solution.

Drug Design

- There are two major types or classifications of drug design.
- The first is called as (1) **ligand-based drug design** and the second, (2) **structure-based drug design**.

1. Ligand-based drug design- In this branch or type of pharmaceutical formulation the design of the drug will be made or built depends on the knowledge of what binds to it.

2. Structure-based- while this type drug design will depend on the information related with the three dimensional structure of the biological target these information will be gotten by using methods like X-ray or Drug design software.

Sr. No.	Software name	Major use
1. Pharmaco	kinetic parameters	
1	DDDPlus	Dissolution and disintegration study
2	GastroPlus	In-vitro and in vivo correlation for various formulations
3	MapCheck	Compare dose or fluency measurement
2. Ligand int	eractions and molecular dynamic	
4	AutoDock	Evaluate the ligand-protein interaction
5	Schrodinger	Ligand-receptor docking
6	GOLD	Protein-ligand docking
7	BioSuite	Genome analyzing and sequence analyzing
3. Molecular	modeling and structural activity relationship	
8	Maestro	Molecular modeling analysis
9	ArgusLab	Molecular docking calculations and molecular modeling package
10	GRAMM	Protein-protein docking and protein-ligand docking
11	SYBYL-X Suite	Molecular modeling and ligand based design
12	Sanjeevini	Predict protein-ligand binding affinity
13	PASS	Create and analysis of SAR models
4. Image and	lysis and Visualizers	
14	AMIDE (A Medical Image Data Examiner)	Medical image analysis in molecular imaging
15	Discovery Studio* Visualizer	Viewing and analyzing protein data
16	Imaging Software Scge-Pro	Cytogenetic and DNA damage analysis
17	Xenogen Living Image Software	In vivo imaging display and analysis
5. Data anal	ysis	
18	GeneSpring	Identify variation across set of sample and for correction method in samples
19	QSARPro	Protein-protein interaction study
20	REST 2009 Software	Analysis of gene expression data
6. Behaviora	l study	
21	Ethowatcher	Behavior analysis
22	MARS (Multimodal Animal Rotation System)	Animal activity tracking, enzyme activity, nanoparticle tracking and delivery stu

Software and computer based programs used during new drug discovery and development.

Factors affecting Drug formulation

- Particle size
- Polymorphism
- pH
- Solubility
- Stability
- Drug concentration

The Drug development process

Step-1: Discovery and Development of active drug element or compound

Step 2: Preclinical Research

Step 3: Clinical Research

Step 4: FDA Drug Review

Step 5: FDA Post-Market Drug Safety Monitoring

The Drug development process

- Step 1: Discovery and Development
- Discovery
- Researchers discover new drugs through:
- New insights into a disease process that allow researchers to design a product to stop or reverse the effects of the disease.
- Many tests of molecular compounds to find possible beneficial effects against any of a large number of diseases.
- New technologies, such as those that provide new ways to target medical products to specific sites within the body.

- At this stage in the process, thousands of compounds may be potential candidates for development as a medical treatment.
- After early testing, only a small number of compounds look promising and call for further study.
- Development
- Once researchers identify a promising compound for development, they conduct experiments to gather information on:
- \checkmark How it is absorbed, distributed, metabolized, and excreted.
- \checkmark Its potential benefits and mechanisms of action.

✓ The best dosage.

- \checkmark The best way to give the drug (Drug delivery methods).
- ✓ Side effects or adverse events that can often be referred to as toxicity.
- ✓ How it affects different groups of people (such as by gender, race, or ethnicity) differently.
- \checkmark How it interacts with other drugs and treatments.

Step 2: Preclinical Research

- Before testing a drug in people, researchers must find out whether it has the potential to cause serious harm, also called toxicity.
- The two types of preclinical research are:
- In Vitro
- In Vivo
- These studies must provide detailed information on dosing and toxicity levels.
- After preclinical testing, researchers review their findings and decide whether the drug should be tested in people.

Step 3: Clinical Research

- "Clinical research" refers to studies, or trials, that are done in people.
- In this step researchers design the clinical study, different Clinical Research Phases(0-IV) and begin the Investigational New Drug Process (IND).
- Designing Clinical Trials
- Clinical Research Phase Studies
- The Investigational New Drug Process
- FDA IND Review Team
- Approval

Designing Clinical Trials

- These trials follow a specific study plan, called a protocol, that is developed by the researcher or manufacturer.
- Before a clinical trial begins, researchers review prior information about the drug to develop research questions and objectives.
- Then, they decide:
- Who qualifies to participate (selection criteria)
- How many people will be part of the study
- How long the study will last

Contd-

- Whether there will be a control group and other ways to limit research bias.
- How the drug will be given to patients and at what dosage
- What assessments will be conducted, when, and what data will be collected.
- How the data will be reviewed and analyzed.

The Investigational New Drug Process

- In the IND application, developers must include:
- Animal study data and toxicity (side effects that cause great harm) data.
- Manufacturing information.
- Clinical protocols (study plans) for studies to be conducted.
- Data from any prior human research.
- Information about the investigator.

Step 4: FDA Drug Review

- If a drug developer has evidence from its early tests and preclinical and clinical research that a drug is safe and effective for its intended use, the company can file an application to market the drug.
- The FDA review team thoroughly examines all submitted data on the drug and makes a decision to approve or not to approve it.

- New Drug Application
- A New Drug Application (NDA) tells the full story of a drug.
- Its purpose is to demonstrate that a drug is safe and effective for its intended use in the population studied.
- A drug developer must include everything about a drug—from preclinical data to Phase 3 trial data—in an NDA.

- Developers must include reports on all studies, data, and analyses. Along with clinical results, developers must include:
- ✓ Proposed labeling
- ✓ Safety updates
- ✓ Drug abuse information
- ✓Patent information
- ✓Institutional review board compliance information
- ✓ Directions for use

• FDA Review

- Once FDA receives an NDA, the review team decides if it is complete.
- If it is not complete, the review team can refuse to file the NDA.
- If it is complete, the review team has 6 to 10 months to make a decision on whether to approve the drug.

Step 5: FDA Post-Market Drug Safety Monitoring

- Even though clinical trials provide important information on a drug's efficacy and safety, it is impossible to have complete information about the safety of a drug at the time of approval.
- Despite the rigorous steps in the process of drug development, limitations exist.
- Therefore, the true picture of a product's safety actually evolves over the months and even years that make up a product's lifetime in the marketplace.

Phases of Clinical trials Phase-0

- Phase 0 trials are the first clinical trials done among people.
- They aim to learn how a drug is processed in the body and how it affects the body.
- In these trials, a very small dose of a drug is given to about 10 to 15 people.

Phase I

- Phase I trials aim to find the best dose of a new drug with the fewest side effects.
- Study Participants: 20 to 100 healthy volunteers or people with the disease/condition.
- Length of Study: Several months.
- **Purpose:** Safety and dosage.
- Approximately 70% of drugs move to the next phase.
- The Central Drugs Standard Control Organization (CDSCO) is the national regulatory body for Indian pharmaceuticals and medical devices.

Phase II

- Phase II trials further assess safety as well as if a drug works.
- Study Participants: Up to several hundred people with the disease/condition.
- Length of Study: Several months to 2 years.
- **Purpose:** Efficacy and side effects.
- Approximately 33% of drugs move to the next phase

Phase III

- Study Participants: 300 to 3,000 volunteers who have the disease or condition.
- Length of Study: 1 to 4 years.
- **Purpose:** Efficacy and monitoring of adverse reactions.
- Approximately 25-30% of drugs move to the next phase.

Phase IV

- Study Participants: Several thousand volunteers who have the disease/condition.
- Purpose: Safety and efficacy.

Approval

- The FDA review team has 30 days to review the original IND submission.
- The process protects volunteers who participate in clinical trials from unreasonable and significant risk in clinical trials.

FDA responds to IND applications in one of two ways:

- 1. Approval to begin clinical trials.
- 2. Clinical hold to delay or stop the investigation.
- FDA can place a clinical hold for specific reasons, including:
 - Participants are exposed to unreasonable or significant risk.
 - Investigators are not qualified.
 - Materials for the volunteer participants are misleading.
 - The IND application does not include enough information about the trial's risks.