
Acid Soil and Their Management

Dr. Arunabha Pal

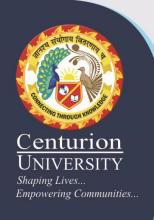
Contents

- Introduction
- Classification of acid soil
- Occurrence of Acid soil
- Sources of acid soil formation
- Process of acid soil formation
- Characteristics of Acid soil
- Kinds of acidity
- Impact on soil property
- Management of soil acidity
- Conclusion
- References

Acid soil

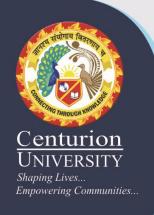
• Soil with low pH contain relatively high amounts of exchangeable H⁺ & Al ³⁺considered as the acid soil.

• Ultra acidic : 3.3

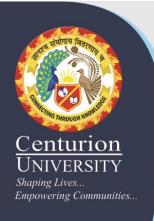

• Extremly acidic : 3.5 to 4.5

• Very strong acidic: 4.5 to 5.0

• Strong acidic : 5.1 to 5.5


• Moderately acidic: 5.6 to 6.0

• Slightly acidic : 6.1 to 6.5

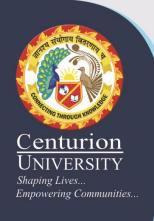


Occurrence |

- 157 M ha cultivable land in India 49 M ha of land are acidic
- pH >5.6= 26 M ha
- pH 6.5= 23 M ha
- Acid soil occupies only 8% of total geographical area in India.
- ✓ Arunachal Pradesh 6.79 M ha
- ✓ Assam 4.66 M ha
- ✓ Manipur 2.19 M ha
- ✓ Meghalaya 2.24 M ha
- ✓ Mizoram 2.05 M ha
- ✓Tripura 1.05 M ha

Sources of acid soil formation

Different sources for formation acid soil

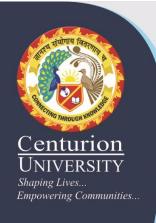

• Rain fall

Vegetation cover

Parent materials

- Topography
- Fertilizer application
- Human interference

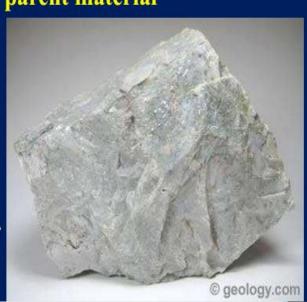
- Plant root activity
- Decomposition of organic matter
- Climate

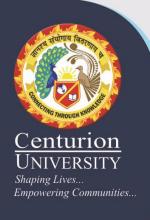


Rain fall

- Mostly found in excess rain fall areas (Hilly areas).
- Excess rain fall leaches base cation from the soil.
- Additionally rain water has a slightly acidic **pH is 5**
- Creates base unsaturation.
- Increase the percentage of Hydrogen and

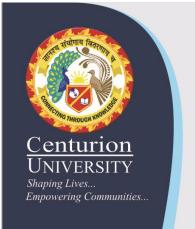
Aluminium ion in soil

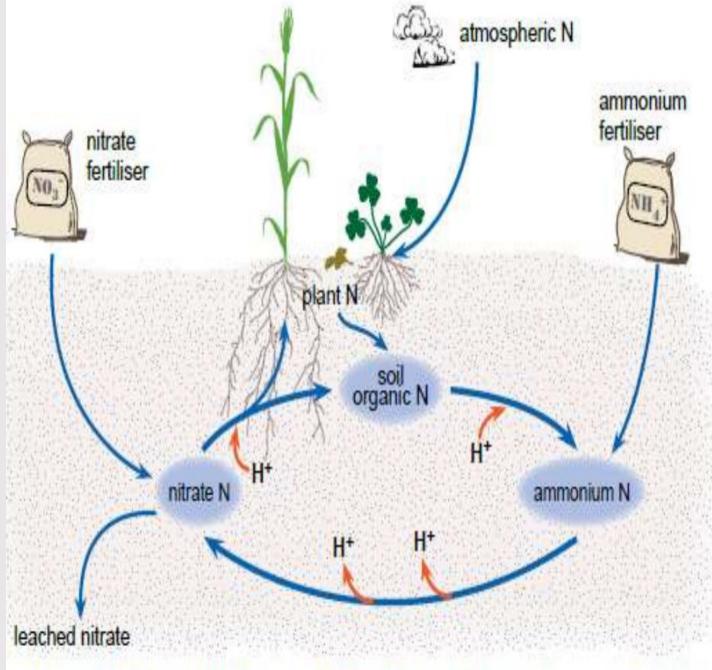



Parent materials

- √The development of acid soil on acidic rocks like Granite, Gneiss, quartz silica.
- ✓ When these rocks lacks bases, produce acidity in soil after decomposition by weathering
- ✓ Silicic acid- Orthosilicic acid & trisilicic acid

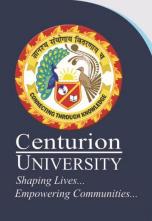
Reason for development of acid soil from parent material


- ✓ Parental rock with simple composition.
- ✓ Less adsorbed cation.
- ✓ Poor buffering capacity.
- ✓ Quick percolation of water through them.




Fertilizer use

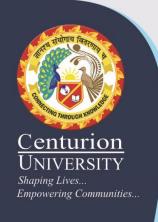
- Repeated application of ammoniacal fertilizer leads to formation of acid soil.
- Ammonium sulphate & Ammonium nitrate fertilizer reacts in the soil process is called nitrification to form a nitrate.
- This process release the Hydrogen ions.



34 The main pathways showing the involvement of nitrogen (N) fertilisers in soil acidification

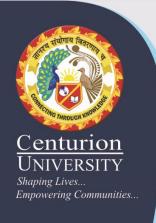
Plant root activity

- Plant uptake nutrients in the forms of both anion and cation
- Plant must maintain a neutral charge in their roots
- In order to compensate the extra positive chargethey release the H⁺ ions.
- Some plants roots produce the organic acid acid soil.

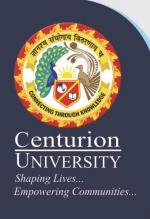

Decomposition of organic matter

Decomposition process requires the microorganism

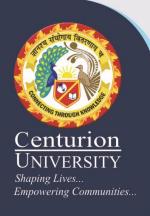
Microorganism - release the CO_2


CO₂ reacts with soil water can produce the carbonic acid.

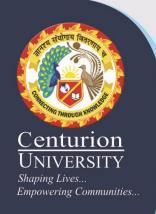
Acid soil


<u>Climate</u>

- Humid region development of acid soil good because where evaporation is less than precipitation
- Acid soil must receive more than 750 mm annual rainfall.
- Temperate region the acid soil can develop even if rain fall scanty.
- Hilly region evaporation is very slow due to very low temperature.

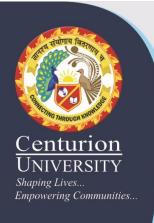

Vegetation cover

- Temperate region areas covered with conifers acid soil develop easily.
- Foliage of conifers lacks alkali substances.
- Leaf-litter on ground is degraded organic acids
 (fulvic acid) produced its makes soil become acidic.
- Coastal region & marshy places plants after the death & decay produce acid which render the acidic


Topography

- Sloppy places with good drainage condition are supposed to be development of acid soil.
- Development of acid soil is very easy in hill slope
- In plains with good drainage condition enhance the acid soil.

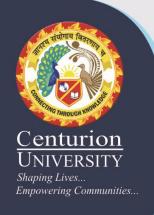
Human interferences


- Improving drainage in submerged lands
- In Cauvery delta region acid soil is formed due to application ammoniacal fertilizer.
- Regular use of nitrogen fertilizers.
- Industrial wastes containing sulphur / Sulphur dioxide contribute acid soil.

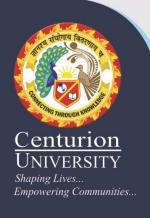
Process

Laterization

Podzolisation

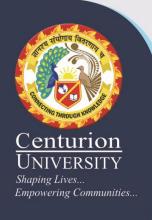

Laterization

- Occurs in tropical and sub tropical.
- Laterites are formed from the leaching of parent rocks (Granite, Basalts, schist, sandstone).
- Laterites soils are rich in Al & Fe- Acidic in nature.
- Aluminium ore exist in clay minerals.
- Due to leaching acid dissolving the parent mineral lattice.
- Easily leached ions of Ca, Mg, Na, K.



<u>Podzolisation</u>

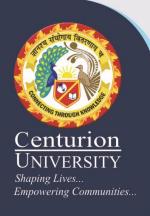
- Process of soil formation especially in humid region.
- It involves mobilization and precipitation of dissolved organic material and soluble mineral like Al & Fe are leached from A horizon to B horizon.
- Its formed under moist, cool & acidic condition.
- Especially where the parent material such as quartz.
- Siliceous material creates strong acidic



Characteristics of Acid se

Physical

- Light texture soil
- High permeability
- Poor water holding capacity
- Poor cation exchange capacity
- Poor organic matter content


Chemical

- Base unsaturated soil
- More anions than cations.
- Active and potential soil acidity.
- Toxic effects of Al concentration more.
- At low pH Al, Fe, Mn, Zn, Cu, Co availability is more
- P, Ca, Mg is less

Biological

- Fungi population is more than that of bacteria
- Fungi cause root disease.
- Rate of decomposition of biological material and rate of mineralization and nitrification are reduced when acidity is increased.

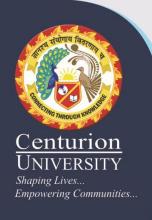
Kinds of acidity

Active acidity

Exchange acidity

Residual acidity

Total acidity



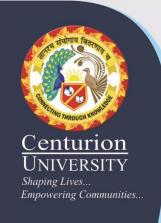
Impact on soil properties

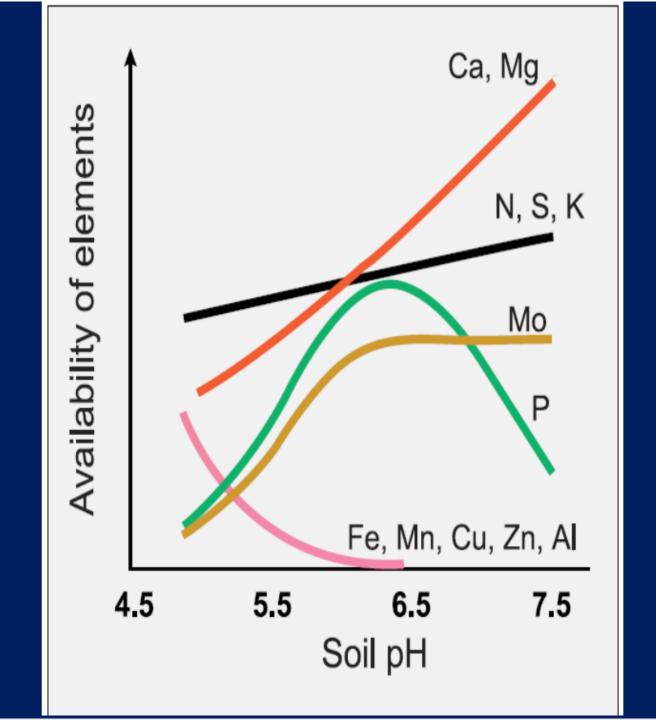
Physical

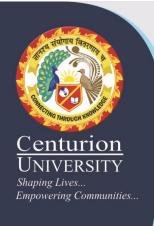
Chemical

Biological

Physical

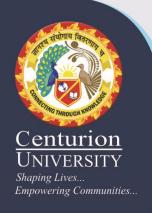

- In strongly acid soils the potential for reduced vegetation
 - soil losses due to water & wind erosion are also increased.
- low pH soils are more loosely held together degraded through external influences such as high rainfall events, drought.

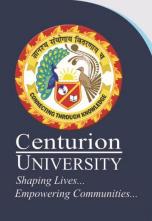




Chemical

- •Low pH
- More anion fixing capacity
- High percentage of base unsaturation
- Decrease the availability of P
- Aluminium toxicity is more
- Ca, Mg levels are decreased deficiency occur
- Mo level decreased deficiency occur
- Restriction of nitrogen fixation in legumes



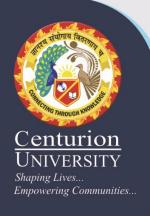


Biological

- Low soil pH leads to reduced growth of beneficial organisms.
- Low pH results in a change in the microbial decomposition processes (essential for the release of nutrients from organic matter).
- Symbiotic relationships between native vegetation and soil organisms
- Decreasing the survival of native vegetation.
- Earthworms and some insects are unable to tolerate low -lead to poorer soil structure and reduced organic matter decomposition

Management of acid soil

Application of liming materials


Different liming material to reclamation of acid soil

• Oxides - CaO

• Hydroxides - Ca(OH)₂

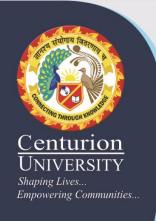
• Carbonates - CaCO₃

• Silicate of calcium - CaSiO₃

Calcium carbonate CaCO₃

Lime is dissolved (slowly) by moisture in the soil to produce Ca²⁺ and hydroxide (OH⁻):

$$CaCO_3 + H_2O \text{ (in soil)} \rightarrow Ca^{2+} + 2OH^- + CO_2(gas) \text{ Equation (3)}$$


Newly produced Ca2+ will exchange with Al3+ and H+ on the surface of acid soils:

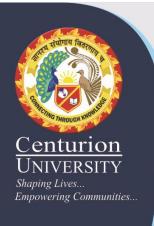
$$Ca^{2+}$$
 + [Soil particle + Al³⁺ and H⁺] \rightarrow [Soil particle + Ca²⁺] + Al³⁺ + H⁺ Equation (4)

Lime produced OH- will react with Al3+ to form solid Al (OH-)3, or it will react with H+ to form H₂O as shown in equations 5 and 6.

$$30H^- + Al^{3+} \rightarrow Al (OH)_3 (solid)$$
 Equation (5)

$$OH^- + H^+ \rightarrow H_2O$$
 Equation (6)

Oxides of lime

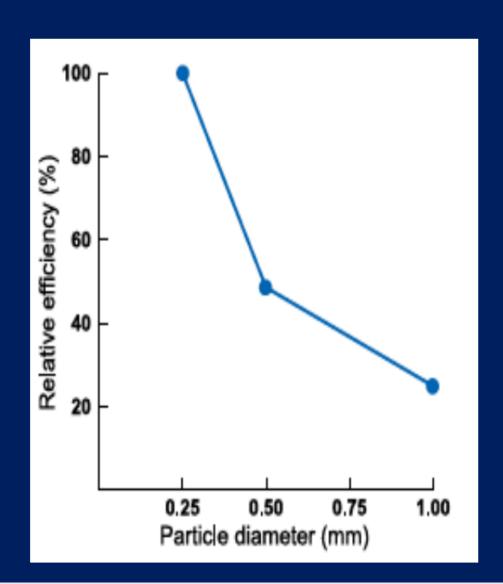

$$2\text{CaO} + \text{Soil} (\text{H}^+ + \text{Al}^{3+}) + \text{H}_2\text{O} \longrightarrow \text{Soil}(\text{Ca}) + \text{Al}(\text{OH})_3$$

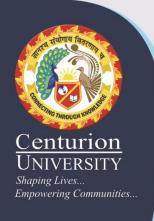
Hydroxides of lime

$$2Ca(OH)_{2+}$$
 Soil $(H^+ + Al^{3+})$ Soil $(Ca)+Al(OH)_3 + H_2O$

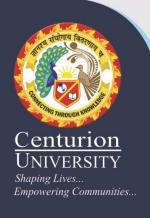
Silicates of Calcium

$$2CaSiO_3 + 3H_2O + Soil (H^+ + Al^{3+}) \longrightarrow Soil (Ca) + 2H_2SiO_3 + Al(OH)_3$$




Solubility and qualities of lime

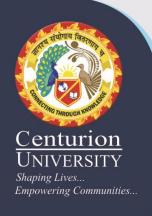
- Lime is lowly soluble in water- particles must be finely ground to neutralize soil acidity.
- Very small changes in the sizes of the particles have a major effect on the time required to dissolve them.
- Effectiveness depends Purity of the liming material & how finely it is ground.
- The lower the CCE value, the more lime you will need to neutralize the soil's acidity

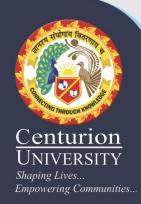


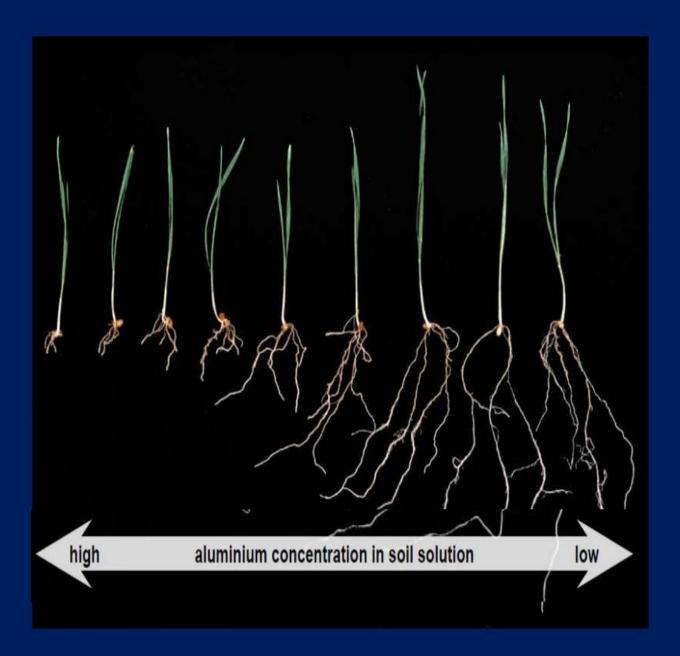
Particle size distribution & efficiency

- liming eliminates toxic Al³ +and H⁺ through the reactions with OH⁻.
- Excess OH⁻ from lime will raise the soil pH, which is the most recognizable effect of liming.
- Another benefit of liming is the added supply of Ca²⁺, as well as Mg²⁺

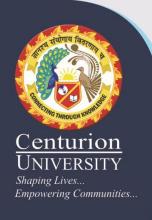
Benefits

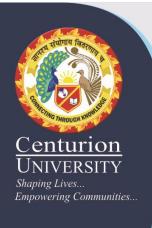

Root



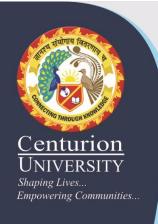

Before liming


After liming





Effects of over liming

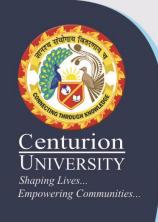

- Deficiency of Fe, Cu, Zn, P, K
- Increment of OH⁻ activity may cause root injury
- Over liming Boron deficiency occur
- Too much application of lime increase the pore space in the soil- soil dries up- efficiency of water use is low

Crop residues

- Soil pH changes after the addition of chickpea & canola residues.
- The greatest increase in soil pH occurred after chickpea addition as it is easily mineralized.
- Chickpea has a potential alkalinity.
- The soluble fraction was the main source of alkalinity within the first 2 days.

Kochian LV, Hoekenga OA, Pineros MA (2004)

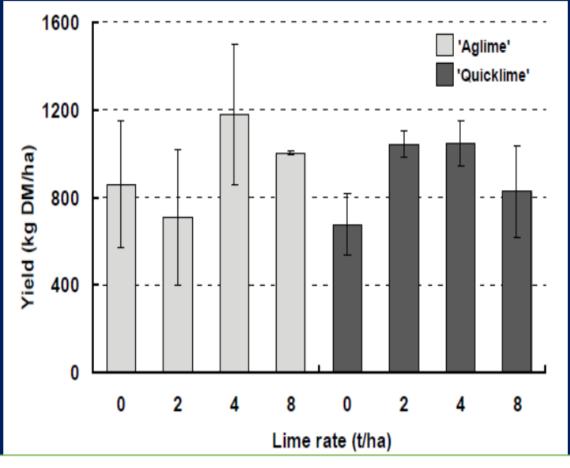
- Basic cations which are released during decomposition of crop residuces increase the pH (Noble and Randall, 1999).
- The excess cation content, indicative of ash alkalinity, represents the liming potential of residues (Noble *et al.*, 1996).


Table 1. Chemical properties of the residues.ResidueC:N ratioAsh Alkalinity (cmol/kg)Chickpea21:1150Canola40:1130Wheat64:145

(Rukshana et al., 2009).

Effects of unburned Lime on Soil pH and Acidic Soil

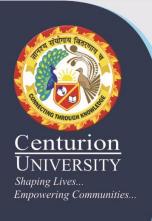
- The lime materials used were agricultural burned lime and 3 unburned lime materials
- √Karongi
- ✓ Musanze
- **✓** Rusizi
- Fineness of agricultural burned and Musanze unburned lime were higher (70.57 and 63.03%, resp.).



- The increase of Mg saturation was observed only with Karongi unburned lime application.
- Use of 2.8 t/ha of Rusizi or Musanze unburned lime as alternative to the agricultural burned lime decrease soil acidity.

C. Yamoah etal 1996

Comparison of agricultural lime and quick lime



Moir et al 2009

Crop: Lucerne

Agriculture lime: Increased pH from 5.3 to 5.6

Reduced Al level from 2 to 1.3 me/100g



Neutralization of soil acidity by animal manures & Comparison

Five animal manures

- Rabbit manure
- Swine manure
- Goat manure
- Poultry manure
- Cow manure

Hue et al. (1986),

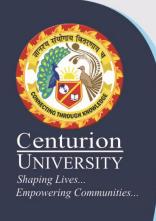
Reactions

- Organic manures mineralize- Ca ions are released into the soil solution.
- Ca ions get hydrolysis process.
- Calcium hydroxide formed reacts with soluble aluminum ions in the soil solution to give insoluble Al(OH)₃.

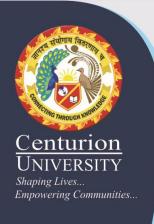
Hue et al. (1986),

Chemical composition of animal manure

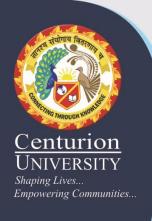
<u>Ca</u>	<u>Mg</u>
1.37	2.16
1.37	1.30
1.37	0.83
1.24	0.89
1.12	1.94
	1.37 1.37 1.37 1.24


Ano et al 2007

Acidity under successive pig slurry applications


- Pig slurry application as soil manure can alter the chemical properties of the soil and affect its acidity, modifying the environment for crop growth and development.
- Deceased the acidity to a depth of 8cm.

Cledimar Rogério Lourenzi et al. 2008


- The application of pig slurry increased soil pH
- The applications also resulted in accumulation of Ca and Mg exchangeable levels in the surface layers, increasing base saturation and reducing Al³⁺ saturation.

Cledimar et al. 2008

Natural resources

- Nitrate leaching considered to be the dominant mechanism for accelerated acidification
- The growing of deep-rooted perennial pastures (lucerne) is seen as an answer to slowing the acidification process (Ridley *et al.* 1998).
- This could be achieved by perennial plants using available nitrogen more efficiently thereby reducing nitrate leaching.
- The native eucalypts increase the surface soil pH (Wilson 2002)

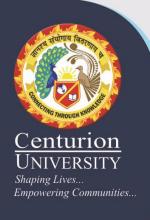
Selection of crops

Highly tolerant

- Strawberry
- Goose berry
- Plum
- Radish
- Sweat potato
- Pepper
- Beans
- Cabbage
- Carrot

Moderately tolerant

- Pineapple
- Orange
- Litchi
- Jack fruit
- onion
- Tomato


Slightly tolerant

Mango

Banana

Guava

Cashew

Conclusion

- Soil acidity is a serious problem in agricultural land
- We improve soil health practice various management practices
- Based on soil test value recommend the fertilizer
- Judicious application of nitrogenous fertilizer
- To advice the farmer should know about soil test technology