# Waves and Optics

Teacher

Category

### Course Attendees

Still no participant

Still no reviews

# Code(Credit) :CUTM1486(3-2-1)

## Course Objectives

• To aware the students about the various phenomena of waves and optics.
• To solve many types of problems involving wave motion.
• To understand the phenomenon like Interference, Diffraction through practice mode.

## Learning Outcomes

Upon successful completion of this course, students will be able to:

• Understand the physics behind various phenomena in waves and optics.
• Understand various natural phenomena (like interference and diffraction) that are happening in their surroundings.
• Understand longitudinal, transverse waves and their applications.

## Course Syllabus

Module-I
Superposition of Collinear Harmonic oscillations: Linearity and Superposition Principle. Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats).

Wave Motion: Plane and Spherical Waves. Longitudinal and Transverse Waves.Plane Progressive (Travelling) Waves.Wave Equation. Particle and Wave Velocities. Differential Equation. The pressure of a Longitudinal Wave. Energy Transport. The intensity of Wave. Water Waves: Ripple and Gravity Waves.

Module-II
The velocity of Waves: Velocity of Transverse Vibrations of Stretched Strings. The velocity of Longitudinal Waves in a Fluid in a Pipe. Newton’s Formula for Velocity of Sound. Laplace’s Correction.

Module-III
Superposition of Two Harmonic Waves: Standing (Stationary) Waves in a String: Fixed and Free Ends. Analytical Treatment.Phase and Group Velocities. Changes with respect to Position and Time.The energy of the Vibrating String.Transfer of Energy.normal modes of Stretched Strings. Plucked and Struck Strings. Melde’s Experiment.Longitudinal Standing Waves and Normal Modes.Open and Closed Pipes.Superposition of N Harmonic Waves.

Module-IV
Wave Optics
Interference: Huygens Principle.Division of amplitude and wavefront. Young’s double-slit experiment.Lloyd’s Mirror and Fresnel’s Biprism. Phase change on reflection: Stokes’ treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton’s Rings: Measurement of wavelength and refractive index.

Practice 1. To determine the wavelength of sodium light using Newton’s Rings.

Practice 2. To determine the refractive index of liquid using Newton's Rings.

Module-V
Interferometer: Michelson Interferometer-(1) Idea of the form of fringes (No theory required), (2) Determination of Wavelength, (3) Wavelength Difference, (4) refractive index, and (5) Visibility of Fringes. Fabry-Perot interferometer.

Practice 3. To determine the wavelength of sodium source using Michelson’s interferometer.

Practice 4. To determine the refractive index of a thin glass plate using Michelson’s interferometer.

Practice 5. To determine the wavelength of a laser using Michelson’s interferometer.

Module-VI
Fraunhofer diffraction: Single slit. Circular aperture, Resolving Power of a telescope. Double slit. Multiple slits. Diffraction grating. Resolving power of grating.

Practice 6. To determine the wavelength of Na source using a plane diffraction grating.

Practice 7. To determine dispersive power and resolving power of a plane diffraction grating.

Module-VII
Fresnel Diffraction: Fresnel’s Assumptions. Fresnel’s half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel’s Integral, Fresnel diffraction pattern of a straight edge, a slit, and a wire.

Practice 8. To study Lissajous Figures.

Practice 9. To calculate the velocity of ultrasonic sound through different liquid media

Practice 10. To calculate the adiabatic compressibility of the given liquid

Practice 11. To calculate the beam of divergence and spot size of the given laser beam.

Practice 12. To investigate the motion of coupled oscillators

Text Books
Optics, Ajoy Ghatak, 2008, Tata McGraw Hill.

Reference Books
1. Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.
2. Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill
3. Principles of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Press.
4. The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.
5. The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.
6. Fundamentals of Optics, A. Kumar, H.R. Gulati, and D.R. Khanna, 2011, R. ChandPublications.

## Session 1

Superposition of Collinear Harmonic oscillations:

Linearity and Superposition Principle.

https://youtu.be/0JcCppja3VA

## Session 2

Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats).

## Session 3

Wave Motion: Plane and Spherical Waves.

https://youtu.be/KiogELkDMvg

## Session 5

Plane Progressive (Travelling) Waves.Wave Equation.

https://youtu.be/XWVGL2h9jCM

## Session 6

Particle and Wave Velocities, Differential Equation

https://youtu.be/UV1W8UrfZFw

https://youtu.be/p_di4Zn4wz4

## Session 8

Energy Transport, Intensity of Wave

https://youtu.be/WcHPkrnpYYQ

https://youtu.be/2Kos5VrtTtA

## Session 9

Assignment-3\Flip Class-3

Water Waves: Ripple and Gravity Waves.

https://youtu.be/opz61LqZTFM

https://youtu.be/4GbWfNHtHRg

## Session 10

The velocity of Waves:

The velocity of Transverse Vibrations of Stretched Strings

## Session 11

Assignment-4\Flip Class-4

The velocity of Longitudinal Waves in a Fluid in a Pipe

https://youtu.be/bSA4gfiahNw?list=PLAGP7RjiIlU5NCq23OMxbxrznGPiSTox5

## Session 12

Newton’s Formula for Velocity of Sound. Laplace’s Correction.

https://youtu.be/Gy7HqToiBvo

Waves:PDF

## Session 13

Superposition of Two Harmonic Waves:

Standing (Stationary) Waves in a String: Fixed and Free Ends.

https://youtu.be/beG8sMf3XJ4https://youtu.be/0JcCppja3VA

## Session 14

Assignment-5\Flip Class-5

Superposition of Two Harmonic Waves: Standing (Stationary) Waves in a String: Fixed and Free End: Analytical Treatment.

https://youtu.be/beG8sMf3XJ4https://youtu.be/0JcCppja3VA

## Session 15

Phase and Group Velocities. Changes with respect to Position and Time

https://youtu.be/EIqKG5TiSYs

## Session 16

The energy of the Vibrating String.Transfer of Energy

https://youtu.be/yNJ06JQDGEM

## Session 17

Normal Modes of Stretched Strings

https://youtu.be/cnH2ItfW48U

## Session 18

Plucked and Struck Strings. Melde’s Experiment

https://youtu.be/_X72on6CSL0pluck

## Session 19

Assignment-6\Flip Class-6

Longitudinal Standing Waves and Normal Modes.Open and Closed Pipes.

https://www.udemy.com/course/physics-of-simple-harmonic-motion-waves-sound/

## Session 24

Lloyd’s Mirror and Fresnel’s Biprism.

https://youtu.be/oux4BWIzZxM

https://youtu.be/qUYU5WV0V5Q

## Session 25

Phase change on reflection: Stokes’ treatment

https://youtu.be/xtOmJCJIwA0

## Session 26

Assignment-8\Flip Class-8

Interference in Thin Films: parallel and wedge-shaped films.

https://youtu.be/EeJwn42EEqc

## Session 27

Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes).

https://youtu.be/2vWjhd6NzDg

## Session 29

Practice-1

To determine the wavelength of sodium light using Newton’s Rings.

http://vlab.amrita.edu/?sub=1&brch=189&sim=335&cnt=1

https://youtu.be/PU-SeNfIRcs

## Session 30

Practice-2

To determine the refractive index of liquid using Newton's Rings.

http://vlab.amrita.edu/?sub=1&brch=189&sim=1520&cnt=1

## Session 31

Interferometer:

Michelson Interferometer-(1) Idea of the form of fringes (No theory required), (2) Determination of Wavelength

https://youtu.be/9ycQolopz6g

## Session 32

Assignment-9\Flip Class-9

Michelson Interferometer-(3) Wavelength Difference.

https://youtu.be/MFRlC3Vlm8Q

## Session 33

Michelson Interferometer-(4) Refractive Index, and (5) Visibility of Fringes

https://youtu.be/ESk6vehQtRw

## Session 35

Practice-3

To determine the wavelength of sodium source using Michelson’s interferometer.

https://youtu.be/if3lc6jT-28

## Session 36

Practice-4

To determine the refractive index of a thin glass plate using Michelson’s interferometer

http://vlab.amrita.edu/?sub=1&brch=189&sim=1519&cnt=1

## Session 37

Practice-5

To determine the wavelength of a laser using Michelson’s interferometer.

http://vlab.amrita.edu/?sub=1&brch=189&sim=1106&cnt=1

## Session 38

Fraunhofer diffraction:

Single slit.

https://youtu.be/ypFkphJ8gNQ

## Session 40

Assignment-11\Flip Class-11

Resolving Power of a telescope.

https://youtu.be/X12PYCegmok

## Session 41

Multiple slits, Diffraction grating

https://youtu.be/EUA8KYv-je4

## Session 43

Practice-6

To determine the wavelength of Na source using a plane diffraction grating.

## Session 44

Practice-7

To determine dispersive power and resolving power of a plane diffraction grating.

https://youtu.be/hnbCvDCN6mE

## Session 45

Fresnel Diffraction:

Fresnel’s Assumptions. Fresnel’s half-Period Zones for Plane Wave

https://youtu.be/DuPbUcsmNuI

https://youtu.be/uf3Y0-6NbjQ

## Session 46

Theory of a Zone Plate, Multiple Foci of a Zone Plate

https://youtu.be/uf3Y0-6NbjQ

## Session 47

Assignment-12\Flip Class-12

Explanation of Rectilinear Propagation of Light, Fresnel’s Integral.

https://youtu.be/uf3Y0-6NbjQ

## Session 48

Fresnel diffraction pattern of a straight edge, a slit, and a wire.

https://youtu.be/IQodXQrB_Hw

## Session 49

Fresnel diffraction pattern of a straight edge, a slit, and a wire continue

https://youtu.be/IQodXQrB_Hw

https://www.slideshare.net/shivanand1964/frsnels-theory-of-diffraction

## Session 50

Practice-8

To study Lissajous Figures.

## Session 51

Practice-9

To calculate the velocity of ultrasonic sound through different liquid media

http://vlab.amrita.edu/?sub=1&brch=201&sim=803&cnt=1

## Session 52

Practice-10

To calculate the adiabatic compressibility of the given liquid

http://vlab.amrita.edu/?sub=1&brch=201&sim=803&cnt=1

## Session 53

Practice-11

To calculate the beam of divergence and spot size of the given laser beam.

http://vlab.amrita.edu/?sub=1&brch=189&sim=342&cnt=1

## Session 54

Practice-12

To investigate the motion of coupled oscillators.