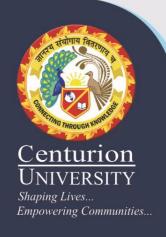


Manures, Fertilizers and Soil Fertility Management


01. Manures

Edited by Monisankar Bera

The term "manure" originally meant that which was "worked by hand" (Fr. *manoeuvre*), but gradually came to apply to any process by which the soil could be improved

- Soil organic carbon play a key role in nutrient cycling of soil and also valuable for attaining the sustainability.
- Throughout the world, agricultural activity has generally involved exploitation of soil organic matter(SOM) reserves as a source of nutrients (Salter and Green 1933).

Advantages of Manures

- Improve soil structure, aeration, infiltration rate and water holding capacity of soil.
- ➤ Provide all essential nutrient elements, which are available in the soil for longer periods.
- > Regulate the soil temperature in summer as well as in winter.
- >Promote microbial activity in the soil.
- > Reduce soil erosion in sandy soils.
- ➤ Can be prepared locally and eco-friendly

Classification of Manures

Manures are classified on the basis of their N content and organic matter present on the soil. On the basis of N content, manures may be arbitrarily grouped into Bulky organic manures and

Concentrated organic manures

Sources of organic residues:

- 1. Cattleshed wastes: dung, urine, and slurry from a bio gas plant
- 2. Human habitation waste: town refuse, sewage, sludge
- 3. Poultry litter, droppings of sheep and goat
- 4. <u>Slaughter house wastes</u>: bone meal, meat meal, blood meal, horn and hoof meal
- 5. Fisheries waste
- By products of <u>agro-industries</u>:Oil cakes, bagasse and pressmud from sugar industries, wastes from fruit and vegetable processing, tea wastes, cotton wastes and any such vegetable matter
- 7. Crop wastes: sugarcane trash, stubbles,
- 8. Water hyacinth and tank silt
- 9. Green manuring crops

Source	Nitrogen (N %)	Phosphorus (P ₂ O ₅ %)	Potash (K ₂ O %)
Bulky organic manures			
Farmyard manure	0.50	0.3	0.50
Compost (urban)	1.0	0.5	1.5
Compost (rural)	0.50	0.15	0.50
Cattle dung	2.41	0.75	0.88
Buffalo dung	1.09	0.82	0.70
Swine dung	2.11	2.41	0.97
Chicken - broilers dung	3.17	3.29	2.41
- pullets dung	3.61	3.33	2.38
- layers	2.85	4.21	2.00
Night soil	5.50	4.00	2.00
Sewage and sludge	1.5-3.5	0.75-4.0	0.3-0.6
Vermicompost	1-1.6	1.2-1.45	0.8-1.1
Phosphocompost	1.2-1.4	2.00-3.50	-

Concentrated organic manures	Nitrogen (N %)	Phosphorus (P ₂ O ₅ %)	Potash (K ₂ O %)
No	n-edible oil c	akes	
Castor cake	4.40	1.80	1.40
Neem cake	5.00	1.10	1.50
Mahua cake	2.50	1.0	1.50
Karanj cake	4.0	1.0	1.0
E	dible Oil cal	kes	
Mustard cake	5.20	1.80	1.20
Sesame cake	6.20	2.10	1.30
Groundnut cake	7.30	1.50	1.30
Linseed cake	5.50	1.10	1.30
Meals	from anima	l wastes	
Bone meal	3.0	20.0	
Fish meal	7.0	6.0	1.0

Farmyard Manure

Farmyard manure is a <u>decomposed</u> mixture of <u>cattle dung and urine</u> with <u>straw and litter</u> used as <u>bedding material</u> and <u>residues from the fodder fed</u> to the cattle.

This is the traditional manure and is mostly readily available to the farmers.

Variation in the composition of the manure (FYM)

- >Kind of the animals
- > Age and individuality
- >Feed used
- ➤ Bedding materials
- ➤ Handling and Storage

Characteristics of FYM:

- ❖ Moisture Content: 60-75%
- ❖ Low analytical value: N:P:K= 0.5% : 0.25%: 0.5%
- Some residual effect.

Nutrients present mostly in the organic forms which subsequently would be converted to inorganic forms to become available to plants. This takes along time. So if a few cart of FYM is used in a crop it will be helpful for the succeeding crop unlike the commercial fertilizers.

Complete manure: Number of nutrients are available, (though unbalanced in FYM). So micronutrient deficiencies may be checked.

Reactions of organic manures in soils

Protein & allied Compound undergoes mineralization in three steps, viz., Aminization, Ammonification, Nitrification

Aminization: (Protein → Proteose → Peptone → Peptide →
Amino acid compd)

Proteins → R- NH₂ + CO₂ + energy + other products

Ammonification: (R-NH₂ + H₂O → R – OH + NH₃ + E

by enzymatic hydrolysis) H₂O

NH4+ + OH-

The relesaed (NH₄+) is subject to following changes:

Nitrification:

(i) 2NH⁺₄ +3O₂ → 2NO₂ +2 H₂O + 4H⁺ + 66 KCal (enzymatic oxdn)

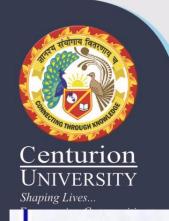
Nitrosomonas europae

2NO₂ + O₂ → 2NO₃ + 18 KCal (enzymatic oxdn)

Nitrobacter winogradskii

(ii) It (NH₄+) may be absorbed directly by plants (iii) It (NH₄+) may be fixed by lattice of expanding type clay mineral

Factors affecting decomposition (FYM):


(i)Temperature:

With increase in <u>Temperature</u>, decomposition becomes <u>faster</u>. Hence, <u>higher the rate</u> of decomposition – <u>higher the loss</u> of Nutrients (Nitrogen).

(ii) Compactness of heap:

In <u>open and light heap, aerobic organisms</u> takes part in the decomposition of manure. In <u>compact heap, the fermentation is</u> <u>slow</u> but regular fermentation is going on mainly due to anaerobic organisms. We <u>should prefer aerobic decomposition</u> (<u>Light heap</u>).

- (iii) Moisture :- Some amount of moisture is needed to hasten the microbial decomposition. If moisture level is too high it will retard fermentation
- (iv) Constituents: The decomposition of manure depends on the presence of soluble nitrogenous matter in the manure. If <u>urine</u> constituent is higher, decomposition is rapid, because microbial organism assimilate N from Urine.

Storage of FYM:

Chemical preservatives are added to farm yard manure to decrease nitrogen losses.

To be most effective the preservatives are added in the cattle shade to **permit direct contact with the liquid portion of excreta or urine**. This has to be done because the loss of N from urine starts immediately.

The commonly used chemical preservatives are gypsum & Super phosphate.

The reaction of **Gypsum with (NH₄)₂CO₃** [The intermediate product from decomposition of Urea present in Urine] is as follows:

 $(NH_4)_2 CO_3 + CaSO_4 \rightarrow CaCO_3 + (NH_4)_2 SO_4$ (under moist condition)

As such under Indian condition use of Gypsum to decrease N-losses does not offer a practical solution.

