In Linux, the terms "inode number," "soft link," and "hard link" are related to the file system and file management. Let's understand each term:

Inode Number:
An inode is a data structure in a file system that stores metadata about a file. It contains information such as the file's size, ownership, permissions, timestamps, and pointers to the data blocks on the disk that hold the file's contents. Every file in a Linux file system is associated with a unique inode, and each inode is identified by an inode number.

The inode number is a unique identifier assigned to each inode in a file system. It is an integer value that represents the file or directory within the file system. Inode numbers are used internally by the file system to manage and access files efficiently.

Soft Link (Symbolic Link):
A symbolic link, also known as a soft link, is a special type of file that acts as a pointer to another file or directory. It is essentially a shortcut or alias that allows you to access a file or directory using a different name or location.

A symbolic link contains the path to the target file or directory. When you access the symbolic link, the operating system resolves the link and redirects the operation to the target file or directory. Symbolic links can span across different file systems or even different machines.

Hard Link:
A hard link is another name for an existing file. Unlike symbolic links, hard links are not separate files; they are multiple directory entries pointing to the same inode. All hard links of a file share the same inode number and refer to the same data blocks on the disk.

When you create a hard link, it creates a new directory entry that points to the same inode as the original file. Modifying or deleting either the original file or the hard link does not affect the other because they are essentially the same file from the file system's perspective. The hard link and the original file are equivalent, and there is no distinction between them.

It's important to note that hard links can only be created within the same file system because they reference the inode number, which is specific to the file system.

In summary, inode numbers uniquely identify inodes within a file system. Symbolic links (soft links) are files that act as pointers to other files or directories, while hard links are multiple directory entries pointing to the same file. Both soft links and hard links provide flexibility and convenience in file management and file system organization.
Example 1: Obtaining Inode Number of a File
#include <sys/stat.h>
#include <stdio.h>

int main() {
 struct stat fileStat;
 char filename[] = "example.txt";

 // Get the file's metadata including the inode number
 if (stat(filename, &fileStat) == -1) {
 perror("Error getting file information");
 return 1;
 }

 printf("File: %s\n", filename);
 printf("Inode number: %ld\n", fileStat.st_ino);

 return 0;
}
In this example, the program uses the stat() system call to obtain the metadata of a file specified by its filename. The st_ino member of the struct stat structure contains the inode number of the file. The program prints the filename and the corresponding inode number.

Example 2: Creating a Soft Link
#include <unistd.h>
#include <stdio.h>

int main() {
 char target[] = "target_file.txt";
 char linkName[] = "symbolic_link.txt";

 // Create a symbolic link
 if (symlink(target, linkName) == -1) {
 perror("Error creating symbolic link");
 return 1;
 }

 printf("Symbolic link created: %s -> %s\n", linkName, target);

 return 0;
}
This example creates a symbolic link using the symlink() system call. The target file is the file to which the symbolic link points, and linkName is the name of the symbolic link. The program checks for any errors during the creation of the symbolic link and prints a message indicating the successful creation of the link.

Example 3: Creating a Hard Link

#include <unistd.h>
#include <stdio.h>

int main() {
 char originalFile[] = "original_file.txt";
 char hardLink[] = "hard_link.txt";

 // Create a hard link
 if (link(originalFile, hardLink) == -1) {
 perror("Error creating hard link");
 return 1;
 }

 printf("Hard link created: %s -> %s\n", hardLink, originalFile);

 return 0;
}
In this example, a hard link is created using the link() system call. The originalFile is the existing file to which the hard link points, and hardLink is the name of the hard link. The program checks for any errors during the creation of the hard link and prints a message indicating the successful creation of the link.

These examples demonstrate the use of inode numbers, soft links, and hard links in Linux programming. You can modify and adapt them as needed for your specific use cases.

