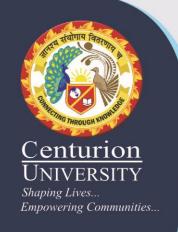


MIECHANICS SUB. CODE-BSPH1102


For B.Sc.(Physics & Chemistry)

(Rotational Dynamics)

Angular momentum of a particle and system of particles.

Torque

By
Mr. G. K. Sahu
Assistant Professor,
CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT,
ODISHA

Angular Momentum

Angular momentum is given by the moment of linear momentum about the fixed point

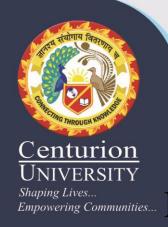
- It is also called moment of momentum.
- It is denoted by

•
$$\vec{J} = \vec{r} \times \vec{P}$$

- It is a vector quantity and its direction is perpendicular to both \vec{r} and \vec{P} .
- For a particle describing circular motion
- $J = mr^2\omega = mvr$

Angular Momentum of System of Particles

Shaping Lives...
Empowering Communities...


If
$$J_1, J_2, J_3$$

Are the angular momentum of different particles of the system about a fixed axis, then the angular momentum of whole system is given by

$$\overrightarrow{J} = \overrightarrow{J_1} + \overrightarrow{J_2} + \overrightarrow{J_3} + .. = (\overrightarrow{r_1} \times \overrightarrow{P_1}) + (\overrightarrow{r_2} \times \overrightarrow{P_2}) + (\overrightarrow{r_3} \times \overrightarrow{P_3}) + \cdots$$

Or,
$$\vec{J} = \sum (\vec{r} \times \vec{P})$$

i.e. the angular momentum of the whole system about the point is the vector sum of the angular momentum of the individual particles about the point.

Torque

Shaping Lives... Differentiating the equation $\vec{J} = \vec{r} \times \vec{P}$, we get

$$\frac{d\vec{J}}{dt} = \frac{d}{dt}(\vec{r} \times \vec{P}) = \frac{d\vec{r}}{dt} \times \vec{P} + \vec{r} \times \frac{d\vec{P}}{dt}$$

Now,
$$\frac{d\vec{r}}{dt} \times \vec{P} = \vec{v} \times m\vec{v} = 0$$

And $\frac{d\vec{P}}{dt}$ -rate of change of linear momentum= \vec{F}

So,
$$\frac{d\vec{J}}{dt} = \vec{r} \times \frac{d\vec{P}}{dt} = \vec{r} \times \vec{F}$$

The quantity $\vec{r} \times \vec{F}$ is called torque (=moment of force)

Thus the time rate of change of angular momentum gives the torque.

Hence torque
$$\vec{\tau} = \vec{r} \times \vec{F} = \frac{d\vec{J}}{dt}$$

For a system of particles,

$$\vec{\tau} = \sum (\vec{r} \times \vec{F})$$

Reference

Shaping Lives... Mechanics by D. S. Mathur, S. Chand, chp-13.17

