

MIECHANICS SUB. CODE-BSPH1102 For B.Sc.(Physics & Chemistry) Rotational Dynamics)

Calculation of moment of inertia for spherical bodies

By Mr. G. K. Sahu Assistant Professor, CENTURION UNIVERSITY OF TECHNOLOGY AND MANAGEMENT, ODISHA

MI of spherical shell about its diameter

A thin uniform spherical shell has a radius of R and mass M. Calculate its moment of inertia about any axis through its centre.

mass/area= $\sigma = \frac{M}{4\pi R^2}$, the thickness of elementary slice=dx Width of the ring = $Rd\theta$ Radius of the ring= $R\cos\theta$ Area of the elementary ring=circumference*width= $2\pi R\cos\theta \times Rd\theta$

Shaping Lives... Empowering Communities... Mass of the ring= $2\pi R \cos\theta \times Rd\theta \times \frac{M}{4\pi R^2} =$ $M \cos \theta \, d\theta / 2$ $x = R \sin \theta$ $dx = R\cos\theta \,d\theta$ So, Mass of the ring= $\frac{Mdx}{2R}$ Hence, $dI = mass \times radius^2 = \frac{Mdx}{2R} \times (R^2 - x^2)$

$$I = \frac{2}{3}MR^2$$

Reference

Shaping Lives... Empowering Communities... Mechanics by D. S. Mathur, S. Chand, chp-11.8 to 11.9

