 Linux system call fcntl() as dup ()

The fcntl() system call in Linux is not equivalent to the dup() system call. They serve different purposes and have different functionalities.
The fcntl() system call in Linux is used for performing various operations on open file descriptors. It can be used to perform actions such as duplicating file descriptors, changing file descriptor flags, and obtaining or modifying file status flags. Some common operations performed with fcntl() include duplicating a file descriptor using the F_DUPFD command and changing the file status flags using the F_SETFL command.
On the other hand, the dup() system call in Linux is used specifically for duplicating a file descriptor. It creates a new file descriptor that refers to the same open file description as the original file descriptor. The new file descriptor is assigned the lowest available file descriptor number that is greater than or equal to the specified file descriptor. This is useful when you want to have multiple file descriptors pointing to the same file or when you want to redirect input/output streams to different file descriptors.
To summarize, while both fcntl() and dup() can be used for duplicating file descriptors, fcntl() is a more general-purpose system call that allows for additional operations on file descriptors, while dup() is specifically focused on duplicating file descriptors.
Here's an example code snippet that demonstrates the usage of the fcntl() system call to duplicate a file descriptor:
#include <fcntl.h>
#include <stdio.h>
#include <unistd.h>
int main() {
 int originalFd = open("original.txt", O_RDONLY); // Open a file for reading
 if (originalFd == -1) {
 perror("Error opening file");
 return 1;
 }

 // Duplicate the file descriptor
 int duplicateFd = fcntl(originalFd, F_DUPFD, 0);
 if (duplicateFd == -1) {
 perror("Error duplicating file descriptor");
 close(originalFd);
 return 1;
 }
 // Use the original file descriptor
 char buffer[100];
 ssize_t bytesRead = read(originalFd, buffer, sizeof(buffer));
 if (bytesRead == -1) {
 perror("Error reading from original file descriptor");
 close(originalFd);
 close(duplicateFd);
 return 1;
 }
 printf("Read from original file descriptor: %.*s\n", (int)bytesRead, buffer);
 // Use the duplicate file descriptor
 lseek(duplicateFd, 0, SEEK_SET); // Move the file offset to the beginning
 bytesRead = read(duplicateFd, buffer, sizeof(buffer));
 if (bytesRead == -1) {
 perror("Error reading from duplicate file descriptor");
 close(originalFd);
 close(duplicateFd);
 return 1;
 }
 printf("Read from duplicate file descriptor: %.*s\n", (int)bytesRead, buffer);
 // Close the file descriptors
 close(originalFd);
 close(duplicateFd);
 return 0;
}
In this example, we open a file called "original.txt" for reading and check if the file opening was successful. Then, we use the fcntl() system call with the F_DUPFD command to duplicate the file descriptor originalFd. If the duplication is successful, we can use both the original file descriptor and the duplicate file descriptor independently.
After duplicating the file descriptor, we read data from both file descriptors separately using the read() system call, and print the content that we read. Finally, we close both file descriptors using the close() system call to release system resources.
Remember to compile and run this code on a Linux system with a C compiler (e.g., gcc) and include the necessary header files (fcntl.h, stdio.h, unistd.h) and linker flags (e.g., -lm).
