
Lecture 02
The Shell and Shell Scripting

In this lecture

• The UNIX shell

• Simple Shell Scripts

• Shell variables

• File System commands, IO commands, IO redirection

• Command Line Arguments

• Evaluating Expr in Shell

• Predicates, operators for testing strings, ints and files

• If-then-else in Shell

• The for, while and do loop in Shell

• Writing Shell scripts

• Exercises

In this course, we need to be familiar with the "UNIX shell". We use it, whether bash, csh, tcsh,
zsh, or other variants, to start and stop processes, control the terminal, and to otherwise interact
with the system. Many of you have heard of, or made use of "shell scripting", that is the process
of providing instructions to shell in a simple, interpreted programming language. To see what
shell we are working on, first SSH into unix.andrew.cmu.edu and type

echo $SHELL ---- to see the working shell in SSH

We will be writing our shell scripts for this particular shell (csh). The shell scripting language
does not fit the classic definition of a useful language. It does not have many of the features such
as portability, facilities for resource intensive tasks such as recursion or hashing or sorting. It
does not have data structures like arrays and hash tables. It does not have facilities for direct
access to hardware or good security features.

But in many other ways the language of the shell is very powerful -- it has functions,
conditionals, loops. It does not support strong data typing -- it is completely untyped (everything
is a string). But, the real power of shell program doesn't come from the language itself, but from
the diverse library that it can call upon -- any program. Shell programming remains popular
because it provides a quick and easy way to integrate command-line tools and filters to solve
often complex problems. But it is not a language for all tasks for all people.

Simple Shell Scripts
The simplest scripts of all are nothing more than lists of commands. Consider the script below.
You can type this into a file called: first.sh

#!/bin/sh --This line should always be the first line in your script
A simple script

who am i
date
pwd

In general, anything after a # is a comment and is ignored by the shell. We see this used both as
an entire line and next to each of several lines, where it shows example output.

The "#!/bin/sh" tells the shell to invoke /bin/sh to run the script. This is necessary because
different users might be using different shells: sh, csh, bash, zcsh, tcsh, &c. And these shells
have slightly different languages and build-in features. In order to ensure consistent operation,
we want to make sure that the same shell is used to run the script each time. This is achieved by
starting the specified shell and passing the script into its standard in.

To execute a shell script in csh, we simply type at the command prompt
% sh first.sh

This should now show the execution of the series of commands written above.

Aside: The various shells are more the same than different. As a result, on many systems, there is
actually one shell program capable of behaving with different personalities. On these systems,
the personality is often selected by soft linking different names to the same shell binary. Then,
the shell looks at argv[0] to observe how it was invoked, sets some flags to enable/disable
behaviors, and goes from there.

The bulk of this simple script is a list of commands. These commands are executed, in turn, and
the output is displayed. The commands are found by searching the standard search path PATH.
PATH is a : delimited list of directories which should be searched for executables. You can find
your path by typing:

echo $PATH

The command which, used as in which ls, will tell you which version of a command is being
executed. This is useful if different versions might be in your search path. In general, the search
path is traversed from left to right.
Aside: Notice that ".", the current working directory, is the last directory listed.

Shell Variables
PATH discussed above is one example of a variable. It is what is known as an environment

variable. It reflects one aspect of the shell environment -- where to look for executables.
Changing it changes the environment in which the shell executes programs. Environment
variables are special in that they are defined before the shell begins.

Environment variables, like most other variables, can be redefined simply by assigning them a
new value:

echo $PATH

PATH=$PATH:/usr/local/apache/bin:.
echo $PATH

To create new variables, you simply assign them a value:

value ="dir"
echo $value

All shell script variables are untyped (well, they really are strings) -- how they are interpreted
often depends on what program is using them or what operator is manipulating or examining
them. The shell scripts uses File system, IO, and file redirections commands among many others.
A list of these commands are given below.

File system commands
mkdir – Creates a directory
rmdir – Deletes a directory
ls – Lists contents of given path
cat – Read from given file and output to STDOUT or given path
find – Search for a given file (find <path> -name <filename>)
chmod – Change mode/permissions
cp - Copy files (cp sourcefile destfile)
mv – Move/rename files (mv oldname newname)
scp – Secure copy (Remote file copy) (scp <filename> <host>:<path>)

I/O Commands
echo – To print to stdout
read – To obtain values from stdin

I/O Redirection
> - Output to given file
< - Read input from given file
>> - Append output to given file

Command Line Arguments
Command line arguments are important part of writing scripts. Command line arguments define
the expected input into a shell script. For example, we may want to pass a file name or folder
name or some other type of argument to a shell script.

Several special variables exist to help manage command-line arguments to a script:
• $# - represents the total number of arguments (much like argv) – except command
• $0 - represents the name of the script, as invoked
• $1, $2, $3, .., $8, $9 - The first 9 command line arguments
• $* - all command line arguments OR
• $@ - all command line arguments

Exercise: Write a simple shell script myscript.sh that takes a path of a directory as a command
line argument and list all files and folders inside the given directory. Run the script as:

� sh myscript.sh /afs/andrew/course/15/123

If there are more than 9 command-line arguments, there is a bit of a problem -- there are only 9
positionals: $1, $2, ..., $9. $0 is special and is the shell script's name.
To address this problem, the shift command can be used. It shifts all of the arguments to the left,
throwing away $1. What would otherwise have been $10 becomes $9 -- and addressable. We'll
talk more about shift after we've talked about while loops.

Quotes, Quotes, and More Quotes
Shell scripting has three different styles of quoting -- each with a different meaning:
• unquoted strings are normally interpreted
• "quoted strings are basically literals -- but $variables are evaluated"
• 'quoted strings are absolutely literally interpreted'
• `commands in quotes like this are executed, their output is then inserted as if it were
assigned to a variable and then that variable was evaluated`

"quotes" and 'quotes' are pretty straight-forward -- and will be constantly reinforced. But,
Here is an example using `quotes` - commands in quotes

day=`date | cut -d" " -f1`
printf "Today is %s.\n" $day

The first expression finds the current date and uses cut (string tokenizer) to extract a specific part
of the date. Then it assigns that to variable day. The day then is used by printf statement. You
can read more about cut command later in this lecture. Cut comes handy in many shell scripts as
it allows us to look at a specific token of a string.

Evaluating Expr
Shell scripts are not intended to do complex mathematical expressions. But expr program can be
used to manipulate variables, normally interpreted as strings, as
integers. Consider the following "adder" script:

sum=`expr $1 + $2`
printf "%s + %s = %s\n" $1 $2 $sum

A Few Other Special Variables
We'll talk a bit more about these as we get into more complex examples. For now, I'd just like to
mention them:
• $? - the exit status of the last program to exit
• $$ - The shell's pid

Predicates
The convention among UNIX programmers is that programs should return a 0 upon success.
Typically a non-0 value indicates that the program couldn't do what was requested. Some (but

not all) programmers return a negative number upon an error, such as file not found, and a
positive number upon some other terminal condition, such as the user choosing to abort the
request.

As a result, the shell notion of true and false is a bit backward from what most of us might
expect. 0 is considered to be true and non-0 is considered to be false.

We can use the test to evaluate an expression. The following example will print 0 if guna is
the user and 1 otherwise. It illustrates not only the test but also the use of the status variable.
status is automatically set to the exit value of the most recently exited program. The notation
$var, such as $test, evaluates the variable.

test "$LOGNAME" = guna
echo $?

Shell scripting languages are typeless. By default everything is interpreted as a string. So, when
using variables, we need to specify how we want them to be interpreted. So, the operators we use
vary with how we want the data interpreted.

Operators for strings, ints and files

Operators for strings, ints, and files

string

x = y,

comparison:

equal

x != y,

comparison: not

equal

x, not null/not

0 length
-n x, is null

ints x -eq y, equal
x -ge y, greater or

equal

x -le y, lesser

or equal

x -gt y, strictly

greater

x -lt y, strictly

lesser

x -ne y,

not

equal

File
-f x, is a regular

file
-d x, is a directory

-r x, is readable

by this script

-w x, is

writeable by

this script

-x x, is

executible by

this script

logical x -a y, logical and, like && in C (0 is true, though)
x -o y, logical or, like && in C (0 is true,

though)

[Making the Common Case Convenient]

We've looked at expressions evaluated as below:
 test -f somefile.txt

Although this form is the canonical technique for evaluating an expression, the shorthand, as
shown below, is universally supported -- and much more reasonable to read:

 [-f somefile.txt]

You can think of the [] operator as a form of the test command. But, one very important note --
there must be a space to the inside of each of the brackets. This is easy to forget or mistype. But,
it is quite critical.

IF-THEN-ELSE

Like most programming languages, shell script supports the if statement, with or without an else. The

general form is below:
 if command

 then

 command

 command

 ...

 command

 else

 command

 command

 ...

 command

 fi

 if command

 then

 command

 command

 ...

 command

 fi

The command used as the predicate can be any program or expression. The results are evaluated
with a 0 return being true and a non-0 return being false.

If ever there is the need for an empty if-block, the null command, a :, can be used in place fo a
command to keep the syntax legal.

The following is a nice, quick example of an if-else:

 if ["$LOGNAME"="guna"]

 then

 printf "%s is logged in" $LOGNAME

 else

 printf "Intruder! Intruder!"

 fi

The elif construct

Shell scripting also has another construct that is very helpful in reducing deep nesting. It is unfamilar to

those of us who come from languages like C and Perl. It is the elif, the "else if". This probably made its

way into shell scripting because it drastically reduces the nesting that would otherwise result from the

many special cases that real-world situatins present -- without functions to hide complexity (shell does

have functions, but not parameters -- and they are more frequently used by csh shell scripters than

traniditonalists).
 if command

 command

 command

 ...

 command

 then

 command

 command

 ...

 command

 elif command

 then

 command

 command

 ...

 command

 elif command

 then

 command

 command

 ...

 command

 fi

The switch statement

Much like C, C++, or Java, shell has a case/swithc statement. The form is as follows:

 case var

 in

 pat) command

 command

 ...

 command

 ;; # Two ;;'s serve as the break

 pat) command

 command

 ...

 command

 ;; # Two ;;'s serve as the break

 pat) command

 command

 ...

 command

 ;; # Two ;;'s serve as the break

 esac

Here's a quick example:

 #!/bin/sh

 case "$2"

 in

 "+") ans=`expr $1 + $3`

 printf "%d %s %d = %d\n" $1 $2 $3 $ans

 ;;

 "-") ans=`expr $1 - $3`

 printf "%d %s %d = %d\n" $1 $2 $3 $ans

 ;;

 "*") ans=`expr "$1 * $3"`

 printf "%d %s %d = %d\n" $1 $2 $3 $ans

 ;;

 "/") ans=`expr $1 / $3`

 printf "%d %s %d = %d\n" $1 $2 $3 $ans

 ;;

 # Notice this: the default case is a simple *

 *) printf "Don't know how to do that.\n"

 ;;

 esac

Run the program like: sh myscript.sh 2 + 3

The for Loop

The for loop provides a tool for processing a list of input. The input to the for loop is a list of values. Each

iteration through the loop it extracts one value into a variable and then enters the body of the loop. the

loop stops when the extract fails because there are no more values in the list.

Let's consider the following example which prints each of the command line arguments, one at a
time. We'll extract them from "$@" into $arg:

 for var in "$@"

 do

 printf "%s\n" $var

 done

Much like C or Java, shell has a break command, also. As you might guess, it can be used to
break out of a loop. Consider this example which stops printing command line arguments, when
it gets to one whose value is "quit":

 for var in "$@"

 do

 if ["$var" = "quit"]

 then

 break

 fi

 printf "%s\n" $var

 done

Similarly, shell has a continue that works just like it does in C or Java.

 for var in "$@"

 do

 if ["$var" = "me"]

 then

 continue

 elif ["$var" = "mine"]

 then

 continue

 elif ["$var" = "myself"]

 then

 continue

 fi

 if ["$var" = "quit"]

 then

 break

 fi

 printf "%s\n" $var

 done

The while and until Loops

Shell has a while loop similar to that seen in C or Java. It continues until the predicate is false. And, like

the other loops within shell, break and continue can be used. Here's an example of a simple while loop:

 # This lists the files in a directory in alphabetical order

 # It continues until the read fails because it has reached the end of input

 ls | sort |

 while read file

 do

 echo $file

 done

In the above code, | called a “pipe” directs output from one process to another process. For
example, ls | sort takes the output from ls command, and sort the output stream received. Pipe is
a form of interprocess communication which we will discuss later.

There is a similar loop, the until loop that continues until the condition is successful -- in other
words, while the command failes. This will pound the user for input until it gets it:

 printf "ANSWER ME! "

 until read $answer

 do

 printf "ANSWER ME! "

 done

Writing Shell Scripts
The decision to write a shell script is mostly based on the task on hand. Tasks that require,
directory and file manipulations, reorganizing files, setting permissions, running other processes
are typically good tasks for using a shell script. System administrators mostly use shell scripting
for their routine tasks.

cut

cut is a quick and dirty utility that comes in handy across all sorts of scripting. It selects
one portion of a string. The portion can be determined by some range of bytes, some
range of characters, or using some delimiter-field_list pair.
The example below prints the first three characters (-c) of each line within the file:
cat file | cut -c1-3
The next example uses a :-colon as a field delimiter and prints the third and fifth fields
within each line. In this respect lines are treats as records:
cat file | cut -d: -f3,5
In general, the ranges can be expressed as a single number, a comma-separated list of
numbers, or a range using a hyphen (-).

C and Shell Scripts
A powerful use of shell scripts is to test C programs to see if they produce the expected output. A
useful unix utility for checking the correctness of the output is to use the Unix Diff utility. To
read more about unix diff, type

% man diff

The diff allows us to compare two files line by line, character by character with many options.
This is particularly useful in testing the conformance of output with large expected output files.
In a very simple way, we can use the diff to test your program as follows. Create a shell script
called test.sh as follows

gcc –ansi –pedantic – Wall $1
./a.out inputfile.txt >output.txt
diff –brief output.txt $2
rm output.txt

Now run the script as follows
% sh test.sh myprogram.c testout.txt

If diff returns nothing, then you will be able to say that your program is correctly producing the
output.

Exercises:
2.1. Write a shell script sum.sh that takes an unspecified number of command line arguments (up
to 9) of ints and finds their sum. Modify the code to add a number to the sum only if the number
is greater than 10

Ans:

#! /bin/sh

sum=0

for var in "$@"

do

 if [$var –gt 10]

 then

 sum=`expr $sum + $var`

 fi

done

printf "%s\n" $sum

% sh 2.1.sh 2 4 5 -- run the script as

2.2. Write a shell script takes the name a path (eg: /afs/andrew/course/15/123/handin), and counts
all the sub directories (recursively).

Ans:

#! /bin/sh

ls –R $1 | wc –l

run the script as:

% sh 2.2.sh /afs/andrew/course/15/123/handin

2.3. Write a shell script that takes a file where each line is given in the format
 F08,guna,Gunawardena,Ananda,SCS,CSD,3,L,4,15123 ,G ,,
 Creates a folder for each user name (eg: guna) and set the permission to rw access for user only
(hint: use fs sa)

Ans:

#! /bin/sh

cat $1 |

while read line

do

 userid=`echo $line | cut –d”,” –f2`

 mkdir $userid

 fs sa $userid $userid rw

done

2.4 Write a shell script that takes a name of a folder as a command line argument, and produce a
file that contains the names of all sub folders with size 0 (that is empty sub folders)

#! /bin/sh

ls $1 |

while read folder

do

 if [-d $1/$folder]

 then

 files=`ls $1/$folder | wc –l`

 if [$files –eq 0]

 then

 echo $folder >> output.txt

 fi

 fi

done

2.5 Write a shell script that takes a name of a folder, and delete all sub folders of size 0

#! /bin/sh

ls $1 |

while read folder

do

 files=`ls $folder | wc –l`

 if [files –eq 0]

 then

 rmdir $folder

 fi

done

2.6 write a shell script that will take an input file and remove identical lines (or duplicate lines
from the file)

#! /bin/sh

cat $1 | sort |

while read line

do

 if [$prev!=$line]

 then

 echo $line >> sorted.txt

 fi

 prev=$line

done

Content modified from Greg Kesden notes.

