                                                  Semaphores and Mutex

Semaphores and mutexes are synchronization mechanisms used in concurrent programming to protect shared resources and coordinate access among multiple threads or processes. Although they serve a similar purpose, there are some differences between semaphores and mutexes:
Semaphores:
Semaphores are typically used for signaling and synchronization between multiple threads or processes.
They maintain a count value and can be used to control access to a specific number of resources.
The count value can be incremented (signal) or decremented (wait) by threads or processes.
Semaphores can have a range of values, allowing for more complex synchronization scenarios.
They can be used to implement various synchronization patterns, such as producer-consumer or reader-writer.
Semaphores can be used by multiple threads or processes simultaneously.
In Linux, both System V IPC semaphores and POSIX semaphores are available.

Mutexes:
Mutexes (short for mutual exclusion) are used for exclusive access to a shared resource.
They provide a binary state, locked or unlocked, indicating whether a resource is currently being used.
Only one thread or process can acquire a mutex at a time, ensuring exclusive access to the protected resource.
If a thread/process attempts to acquire a locked mutex, it will be blocked until the mutex is released.
Mutexes are typically used to protect critical sections of code to prevent race conditions.
Mutexes are commonly used in multithreaded environments.
In Linux, POSIX mutexes (pthread_mutex_t) are widely used.
In summary, semaphores are generally used for signaling and synchronization among multiple threads or processes, often involving a fixed number of resources. They are more flexible in terms of the count value and can be used for various synchronization patterns. On the other hand, mutexes are focused on providing mutual exclusion and exclusive access to a shared resource, ensuring that only one thread/process can hold the mutex at a time.
Certainly! Here's an example code snippet that demonstrates the usage of semaphores and mutexes in a multithreaded environment using POSIX threads (pthread) in Linux:
#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>
#include <semaphore.h>
#define NUM_THREADS 5
int sharedVariable = 0;
sem_t semaphore;
pthread_mutex_t mutex;
void* threadFunction(void* arg) {
    int threadId = *(int*)arg;
    // Use a semaphore to limit the number of concurrent threads
    sem_wait(&semaphore);
    // Use a mutex to protect the critical section
    pthread_mutex_lock(&mutex);
    // Critical section
    printf("Thread %d: Shared variable before increment: %d\n", threadId, sharedVariable);
    sharedVariable++;
    printf("Thread %d: Shared variable after increment: %d\n", threadId, sharedVariable);
    // Release the mutex and semaphore
    pthread_mutex_unlock(&mutex);
    sem_post(&semaphore);
    pthread_exit(NULL);
}

int main() {
    pthread_t threads[NUM_THREADS];
    int threadIds[NUM_THREADS];
    // Initialize the semaphore
    sem_init(&semaphore, 0, NUM_THREADS); // Allow NUM_THREADS to execute concurrently
    // Initialize the mutex
    pthread_mutex_init(&mutex, NULL);
    // Create threads
    for (int i = 0; i < NUM_THREADS; ++i) {
        threadIds[i] = i;
        if (pthread_create(&threads[i], NULL, threadFunction, &threadIds[i]) != 0) {
            perror("Failed to create thread");
            exit(EXIT_FAILURE);
        }
    }
    // Wait for threads to finish
    for (int i = 0; i < NUM_THREADS; ++i) {
        if (pthread_join(threads[i], NULL) != 0) {
            perror("Failed to join thread");
            exit(EXIT_FAILURE);
        }
    }
    // Destroy the mutex and semaphore
    pthread_mutex_destroy(&mutex);
    sem_destroy(&semaphore)
    return 0;
}
In this example, multiple threads increment a shared variable within a critical section. The threadFunction() is the function executed by each thread. A semaphore (semaphore) is used to limit the number of concurrent threads and a mutex (mutex) is used to protect the critical section.

The sem_wait() and sem_post() functions are used to control the number of threads allowed to execute concurrently. The pthread_mutex_lock() and pthread_mutex_unlock() functions ensure exclusive access to the critical section.

The main function creates the threads using pthread_create(), and waits for them to finish using pthread_join(). The shared variable sharedVariable is incremented within the critical section by each thread.
Remember to compile and link this code using the -pthread flag to include the pthread library.
