Mr. Gouri Kumar Sahu Senior Lecturer in Physics CUTM, Paralakhemundi

- **Damped oscillation** The oscillation which takes place in the presence of dissipative force are known as damped oscillation
 - Here amplitude of oscillation decreases w.r.t. time
 - Damping force always acts in a opposite direction to that of motion and is velocity dependence.
 - For small velocity the damping force is directly proportional to the velocity
- Mathematically

Where F_d = damping force

b = damping force constant

v = velocity of oscillator

Negative sign indicates that the direction of damping force and velocity of oscillator are opposite to each other .

In D.H.O. two types of forces are acting such as restoring force and damping force.

Restoring force can be written as

$$F_r = -kx$$

So the net force acting on the body is

$$F_{net} = F_r + F_d$$
$$= -b\frac{dx}{dt} - kx$$

(3)

-----(2)

From Newton's 2nd law of motion $F_{net} = ma = m \frac{d^2x}{dt^2}$ -----(4) After solving the equation (3) and (4) we can write $m\frac{d^2x}{dt^2} = -b\frac{dx}{dt} - kx$ Or, $\frac{d^2x}{dt^2} + 2\beta \frac{dx}{dt} + \omega_0^2 x = 0$ ----(5) Where $b = 2m\beta$ and $\omega_0^2 = \frac{\kappa}{m}$ Eq(5) is a homogeneous, 2^{nd} order differential equation. The general solution of eq(5) for $\beta \neq \omega_0$ is $x = e^{-\beta t} \left[A_1 e^{\left(\sqrt{\beta^2 - \omega_0^2} \right) t} + A_2 e^{\left(-\sqrt{\beta^2 - \omega_0^2} \right) t} \right] \quad \dots$

 A_1 and A_2 are constants depend on the initial position and velocity of the oscillator.

Depending on the values of β and ω_o , three types of motion are possible.

- Such as
- 1. Under damped ($\omega_0^2 > \beta^2$)
- 2. Over damped ($\omega_0^2 < \beta^2$)
- 3. Critical damped ($\omega_0^2 = \beta^2$)

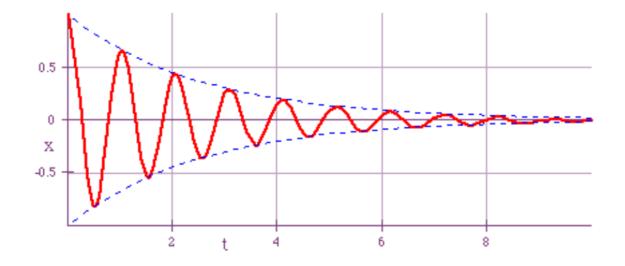
Case-1: Under damped

Condition: $\beta^2 < \omega_0^2$ So, $\beta^2 - \omega_0^2 = -ve$, Hence $\sqrt{\beta^2 - \omega_0^2} = \sqrt{-(\omega_0^2 - \beta^2)} = i\omega$ Where $\omega = \sqrt{(\omega_0^2 - \beta^2)}$ Hence the solution becomes $x(t) = e^{-\beta t} (A_1 e^{i\omega t} + A_2 e^{-i\omega t})$ $= e^{-\beta t} [(A_1 \cos \omega t + iA_1 \sin \omega t) + (A_2 \cos \omega t - iA_2 \sin \omega t)]$ $= e^{-\beta t} [(A_1 + A_2) \cos \omega t + i(A_1 - A_2) \sin \omega t]$ $= e^{-\beta t} [(A \sin \varphi) \cos \omega t + (A \cos \varphi) \sin \omega t]$ $x(t) = Ae^{-\beta t}\sin(\omega t + \varphi)$ Or, 7]

Case-1: Under damped

Where $A_1 + A_2 = A \sin \varphi$ and $i(A_1 - A_2) = A \cos \varphi$ Equation (7) represents damped harmonic oscillation with amplitude $Ae^{-\beta t}$ which decreases exponentially with time and the time period of vibration is $T = \frac{2\pi}{\sqrt{(\omega_o^2 - \beta^2)}}$ which is greater than that in the absence of damping.

Example: Motion of Simple pendulum in air medium.



Decrement

• Decrement: The ratio between amplitudes of two successive maxima.

Let A_1, A_2, A_3 ---- are the amplitudes at time t=t, t+T, t+2T, ---respectively where T is time period of damped oscillation. Then

$$A_{1} = Ae^{-\beta t}$$
$$A_{2} = Ae^{-\beta(t+T)}$$
$$A_{3} = Ae^{-\beta(t+2T)}$$

Hence decrement $d = \frac{A_1}{A_2} = \frac{A_2}{A_3} = e^{\beta T}$

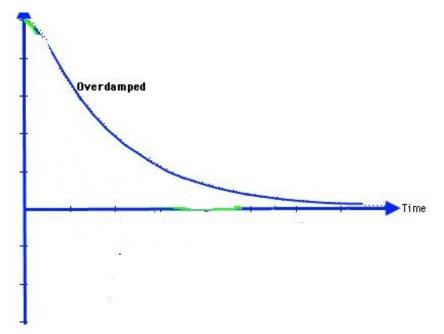
Hence logarithmic decrement is given by

$$\boldsymbol{\lambda} = \log_{\boldsymbol{e}} e^{\beta T} = \boldsymbol{\beta} T = \frac{2\pi \boldsymbol{\beta}}{\sqrt{(\omega_o^2 - \beta^2)}}$$

Case-2: Over Damped

- Condition: $\beta^2 > \omega_o^2$
- $\beta^2 \omega_o^2 = positive$
- Let $\sqrt{\beta^2 {\omega_o}^2} = \alpha$, so from eq(6), we have
- $x = e^{-\beta t} \left[A_1 e^{\alpha t} + A_2 e^{(-\alpha)t} \right] = A_1 e^{-(\beta \alpha)t} + A_2 e^{-(\beta + \alpha)t} \dots (8)$

Since both the powers are negative, the body once displaced comes to the equilibrium position slowly without performing oscillations



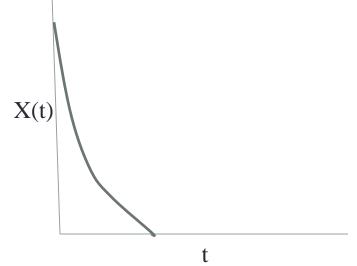
Case-3: CRITICAL DAMPING

Condition: $\beta^2 = \omega_o^2$ Solution: $x(t) = (C + Dt)e^{-\beta t}$

The motion is non oscillatory and the displacement approaches zero asymptotically.

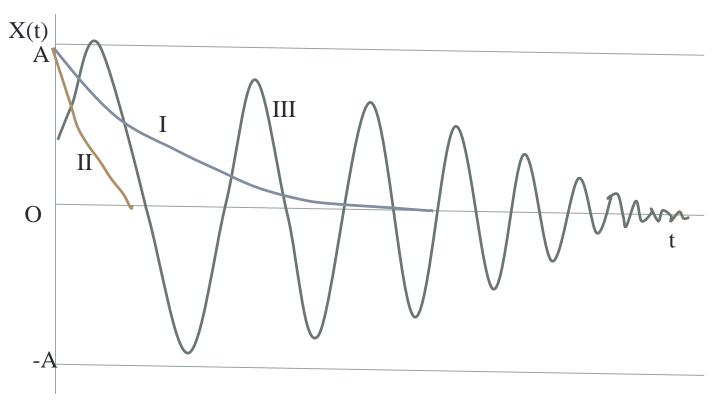
The rate of decrease of displacement in this case is much faster than that of over damped case.

• **Example** – suspension of spring of automobile.



Damped Harmonic Oscillations

I: UNDER DAMPED II: OVER DAMPED III:CRITICAL DAMPED



Problems

- 1. What is the physical significance of damping coefficient? What is its unit (2marks)
- 2. Give the graphical comparison among the following three types of harmonic motion:
 - a) Under damped harmonic motion
 - b) Over damped harmonic motion
 - c) Critically damped harmonic motion
- 3. What is logarithmic decrement? Find the ratio of nth amplitude with 1st amplitude in case of under damped oscillation.(2 mark)
- 4. The natural angular frequency of a simple harmonic oscillator of mass 2gm is 0.8rad/sec. It undergoes critically damped motion when taken to a viscous medium. Find the damping force on the oscillator when its speed is 0.2cm/sec. (2marks)(Ans: 0.64dyne)