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Abstract

Biology implements fundamental principles that allow for attractive mechanical prop-
erties, as observed in biomineralized structures. For example, diatom algae contain
nanoporous hierarchical silicified shells that provide mechanical defense from preda-
tors and virus penetration. These shells generally have a morphology resembling hon-
eycombs within honeycombs, meshes, or corrugated folds, and are surprisingly tough
when compared to bulk silica, which is one of the most brittle materials known.
However, the reason for the enhanced mechanical properties has remained elusive.
Here, it is proposed that one reason for the superior mechanical properties lies in the
geometric arrangement, size, and shape of the structures. By carrying out a series
of molecular dynamics simulations with the first principles based reactive force field
ReaxFF, it is shown that when concurrent mechanisms occur, such as shearing and
crack arrest, toughness is optimally enhanced. This occurs, for example, when struc-
tures encompass two nanoscale levels of hierarchy: an array of thin walled foil silica
structures, and a hierarchical arrangement of foil elements into a porous silica mesh
structure. For wavy silica, unfolding mechanisms are achieved for increasing ampli-
tude, and allow for greater ductility. Furthermore, these deformation mechanisms
are governed by the size and shape of the structure. The ability to transform mul-
tiple mechanical properties, such as toughness, strength, and ductility, is extremely
important when looking into future applications of nanoscale materials. Altering the
mechanical properties of one of the most brittle and abundant minerals on earth,
silica, allows a new window of opportunity for humanity to create applications and
reinvent materials once thought to be impossible. The transferability of the concept
allowing for massive transformation of mechanical responses, such as brittle to duc-
tile or weak to tough, through geometric alterations at the nanoscale, is a profound
discovery that may unleash a new paradigm in the way materials are designed.
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Chapter 1

Background

Since the dawn of civilization, nature been a source of countless inspiration. The

impetus for discovery in many notable minds of the past, like Newton, da Vinci,

and Darwin, has centered around nature and its fascinating characteristics. With

the unfolding of time, nature has left its indelible impact in the design of man made

structures. Presently, the field of biomimetics has come into the age of the nanoscale,

offering an impressive array of inventions that redefine conventional thought. In this

thesis, a systematic analysis of the mechanical properties of diatom inspired nanoscale

mineralized structures is undertaken. As the future foundation of synthetic materials

will rest on the shoulders of the nanoworld, this thesis will hopefully serve as a

guiding light and motivation for the use of nanoscale minerals in conventional design

paradigms and applications. The awe, magnitude, and beauty of the nanoworld is

aptly embodied by the following quote:

"To see a world in a grain of sand, And a heaven in a wild flower,

Hold infinity in the palm of your hand, And eternity in an hour ... -

William Blake [37]

1.1 The diatom

Although invisible to the naked eye, yet unconsciously implemented in structures

throughout human history, diatoms have served as a silent backbone to human



civilization and play a role in cement, carbon sequestration, water filters, and oil

[58, 31, 17, 28, 4, 56, 71]. The impressive arrays of diatom types and applications

are shown in Figures 1-1, 1-2, 1-3, and 1-4 . But why have they served such an

important role? The answer may lie at the nanoscale. Diatoms are micrometer sized

algae with silicified, porous shells. Generally, these pores and surrounding walls have

nanometer to micrometer dimensions and serve to protect the organism and sustain

multiple biological functions. Examples of mechanical protection include preventing

virus penetration, crushing from some predator's mandibles, or digestion [73, 38, 30].

Rather few experimental data has been collected on the mechanical properties

of diatom shells, called frustules. Hamm et al. [39] used a glass needle to load

and break diatom frustules in order to probe their mechanical response at failure.

Their findings for the F. kerguelensis species revealed an elastic modulus of 22.4

GPa, and a maximum stress along the costae of 0.6 GPa (in tension) and 0.7 GPa (in

compression). A comparison of the mechanical properties between different structural

materials and diatom regions is found in Table 1.1. Other studies [60] have used AFM

nanoindentation to study the nanoscale material properties of the porous frustule

layers of diatoms, identifying pore sizes on the order of several tens of nanometers

at the smallest levels in the hierarchy, with ultra-thin silica walls on the order of

several nanometers. For Coscinodiscus sp. It was found that the porosity increased

from the outer to the inner membrane. The pore size ranged from 45 ± 9, 192 ±

35, 1150 ± 130 nm for the cribellum, cribrum, and areola layers, respectively. Of

the three layers, the cribellum had the lowest hardness and elastic modulus: 0.076

± 0.034 GPa, and 3.40 ± 1.35 GPa, whereas the areola had the highest: 0.53 ± 0.13

GPa, and 15.61 ± 5.13 GPa, respectively [60, 59]. They observed that the variation

of mechanical properties between the frustule layers could be influenced by the pore

size, pore distance, porosity, and under different biomineralization processes.

The mechanical properties of diatoms and links to associated structural features

has already been discussed in the literature. For instance, the raphid diatom has a

raphe, which is a split in the frustule along its length with blunted ends, which helps

to reduce stress concentrations [38, 39]. Further, many diatoms share a hexagonal



pattern to the frustules, which feature a high moment of inertia due to the large

distance between the hexagon ledge and the hexagon centroid. A high moment of

inertia increases the capacity of the structure to withstand deformation [39]. The

material that composes the frustules is also important to the diatoms flexibility and

toughness. For example, during the initial stages of frustules growth, silaffins and

polyamines proteins co-precipitate with silicic acid found in the aqueous environment,

thus forming a composite organic material [43, 52, 84, 77, 70]. The cross sectional

shape of the outermost layer, the cribellum, are shallow domes with the tip pointing

outward and the cribrum forms another dome pointing inward, similar to egg shells

or hillocks. Connecting the base of the cribrum and areola is a wall type structure

reminiscent of an I-beam. The lower base of the wall forms the surface of the areola.

This I-beam shape is very common in macroscale engineering applications such as

in steel I-beams used in construction of buildings, and offers an extremely efficient

design due to its high moment of inertia, thus allowing for increased bending stiffness

and greater shear resistance. From a structural point of view, domes are also used

in engineering design due to their capacity to distribute compressive loads along the

wall. Overall, the review of earlier structural and mechanical analyses reveals that

diatoms are fascinating nanoscale structures that incorporate multiple engineering

design concepts, perhaps resulting in an optimization of their mechanical stability.

Materials and Strength (GPa) Young's Modulus (GPa)
diatom regions

cement (compres- 20- 55 10 -35
sion)
steel 0.2- 1 200
Aluminum 0.1 -0.2 70
Copper 0.2 -0.4 110
Silicon 0.2 180
Silica 0.04- 0.06 80 -90
cribellum 0.042 -0.11 2.05 -4.75
cribrum 0.02 - 0.24 0.86 -2.54

areola layers 0.4 -0.66 10.48 - 20.74

Table 1.1: Comparison between structural materials and diatom regions (Data summarized
from Ref. [60, 6]).



Figure 1-1: . These marine diatoms represent the wide array of diatom species, which
reach up to approximately 100,000. Common diatom morphologies are circular, triangular,
quadrilateral, and elliptical. Diatoms generally range from 2 - 2,000 pm in overall size [41].
Reprinted from [89].

1.2 Mechanical properties of nanostructures simi-

lar to diatoms

Other studies of the mechanical properties of brittle materials under extreme geo-

metric confinement, in particular nanowires, revealed that by decreasing the cross-

sectional diameter, the material becomes stronger and is capable of undergoing sig-

nificantly larger deformation before breaking [69, 49, 20]. The size scale effect on

the Young's modulus of silica wires is shown in Figure 1-5. Experimental studies

on silica nanowires of widths ranging from 230-800 nm revealed that fracture stress

was influenced by specimen size, however, the modulus was not affected by size [66].

e n - ........... ... ........ ................ ......... . .. ....... ..... .................................................. ........ - = -11--1111 -- -- tnu_ I



Fortress: 10 m 1 m

Figure 1-2: Merger of structure and material in engineering design [14]. The coquina
stone found in this fortress, located in St. Augustine, FL, is extremely resilient in absorbing
impacts such that cannon balls sink into, rather than shatter or puncture, attesting to its
overall ductile response even though its constituents were made of brittle materials.

This study also determined that the modulus stayed constant at around 68 GPa,

whereas the fracture stress varied from 8.77 to 6.35 GPa for the smallest and largest

SiO 2 wire widths, respectively. Ni et al. [67] experimentally determined that modu-

lus was independent of diameter for amorphous silica nanowires ranging from 50 to

100 nm in diameter. On the other hand, Silva et al. [80] found increasing stiffness

for lower diameters by performing molecular dynamics (MD) simulations on amor-

phous silica nanowires. The fracture toughness of bulk vitreous silica was determined

to be approximately 0.8 MPa mi/ 2 [61]. The failure mechanisms occurring within

the process zone at the crack tip in amorphous silica glass was studied by Bonamy

et al. [8]. By implementing AFM experiments and MD simulations, the authors

found that nucleation and growth of cavities are the dominant mechanism for failure

within the process zone. Integrated silicon circuits have been manufactured with a

wavy structural layout and 1.7 im thickness, and can be elongated up to 10% [48].

Other studies revealed highly ductile amorphous silica nanowires, by using a taper-

drawing process. Ranging from 20 nm in diameter and with highly smooth surfaces,

the nanowires achieve extreme flexibility such that rope-like twists and spiral coils

are realized [55]. However, even though these synthetic nanostructures offer attrac-

tive mechanical properties, they are generally unfeasible for mass production due to

. . ..........

10 Cm



(a) (D3)

/\

Foramen

Figure 1-3: Hierarchical structure of diatoms, showing their porous silica structure. Panel
(a): Schematic of the centric diatom frustule, showing the three porous silica layers lying
along a hexagonal grid. Panel (b) shows AFM and SEM images of various diatom species,
revealing their porous structural makeup. Scale bar: 10 pm. Images reprinted from [58].

complex and expensive manufacturing. For this reason, a second look at harnessing

biomineralization is necessary. The first steps have already been taken by genetic

sequencing of certain diatoms, allowing a better understanding at what proteins are

responsible for the intricate nanoscale shapes seen on the frustules [5]. As the ability

to create these magnificent structures increases, so does the necessity to understand

the fundamental mechanical properties they endow. In light of this, we focus on a

range of mineralized nanostructures found in diatoms and use atomistic simulations

to probe the mechanical response and failure mechanisms. We hypothesize that the

nanoporous geometry of the frustules is the key to providing enhanced toughness, duc-

tility, and strength even though the constituting material itself is inherently brittle.

Thereby, the formation of a nanostructured geometry that includes thin, geometri-

cally confined structures of brittle elements may play a crucial role in understanding

.. .......... . ........ ....... .............. ................. ...



(a)

Figure 1-4: Hierarchical structure of diatoms, showing their porous silica structure. The
SEM images in (a) show various diatom species, displaying the intricate hierarchical porous
silica wall structure of diatoms. Panel (b) shows a schematic of the hierarchical structure.
Panel (c) shows nanoscale voids observed in diatom algae, which are occluded by delicate a
silicate membrane, called a hymen (pl. hymens), which is perforated by round pores (scale
bar 200 nm). Images in (a) reprinted from [52]. Image in (b) reprinted reference [58]. Image
in (c) reprinted from [62].

the materials behavior.

1.3 Outline

This thesis focuses on the mechanical properties of nanoscale structures found in di-

atoms. Within this context, size and shape effects are studied for silica and silicon

systems. Indeed, diatoms are renowned for their mastery of living in harsh, mechani-

cally extreme environments such as waterfalls and in strong sea currents. In Chapter

2, atomistic simulation methods are outlined and particular focus on the reactive

force field, ReaxFF is presented. Chapter 3 focuses on the size dependence of the me-

chanical properties of nano silicon mesh structures, similar to those found in diatoms.

Chapter 4 reveals the effect on the mechanical response and deformation mechanisms

from adding two levels of hierarchy implemented in nanoscale silica, foils and meshes

made up of interlocking foils, as found in diatoms. This chapter also focuses on the

effect of hydration of nano silica structures and its mechanical response. In Chapter

5, geometric effects of amplitude and width on the mechanical response and defor-



mation mechanisms are obtained for folded nano silica structures, similar to those

found in the diatom Ellerbeckia arenaria. Finally, Chapter 6 provides an overview of

the fundamental importance and impact of biomineralized structures and its future

applications while emphasizing prospective research.

140

120-

100cc;

-5

0

80

60

40

20

0
10 100

Diameter D/nm
1000

Figure 1-5: The size scale effect is a common phenomenon that influences mechanical
properties at the nanoscale. The graph shows the Young's modulus of silica wires versus

diameter, for different techniques: vertical experiments (m), in-plane experiment (.), reso-

nant frequency experiments (o) [88, 21], MD simulations of nanowires and thin films (A),
and MD simulation of bulk silica (A). Figure reprinted from [80].
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Chapter 2

Methodology

In this Chapter, an overview of atomistic simulations, and the reactive force field,

ReaxFF is provided. A historical context illuminates the evolution of the atomic

theory, with an overview of the models and simulation techniques. A description of

the theoretical framework, applications, and limitations are given.

2.1 Atomistic modeling

The inception of the atomic theory dates back to approximately 400 B.C., with the

Greek scholars Democritus and Leukippus, stating that the universe is made up of

empty space and indivisible particles, or atoms [82]. They captured a compelling

description, mentioning [42]: "Atoms, divergent in form, propel themselves through

their separation from the infinite, into the great vacuum by means of their mutual

resistance and a tremulous, swinging motion. Here gathered, they form one vortex

where, by dashing together and revolving round in all sorts of ways, the like are

separated off with the like."

Indeed this represents a striking resemblance to the actual behavior of atoms in re-

gards to their motion, attraction, and repulsion. With this description as a harbinger

to the more complex atomistic models of the twentieth century, it was not until 1957

that the first molecular dynamics (MD) simulation was published [3]. The funda-

mental principles of molecular dynamics are illustrated in Figure 2-1. Each atom is



simplified to a point representation, with trajectories in conjunction with the inter-

actions between other atoms through interatomic potentials. By incorporating the

Newtonian equation of motion, F = ma, and thermodynamic parameters, a descrip-

tion of the atom's position r(t), velocity v(t), and acceleration a(t) are gained.

Molecular dynamics offers a powerful elucidation of atomistic phenomenon, and

in many respects allows for pioneering advances in understanding nanoscale material

properties, deformation mechanisms, and even biological processes. In retrospect,

the ability to describe atomic interactions has evolved in part thanks to a symbiotic

relationship with computational technology. As the dawn of the computer age set

forth with the mass production of the Universal Automatic Computer (UNIVAC) in

the 1950's, MD studies would enter a new era. For example, the first MD simulation in

1957 [3], studied the phase transformation of a 32 particle system, proceeding at about

300 collisions per hour on the UNIVAC. The amazing development of computational

processing currently allows the simulation of millions of atoms with near quantum

detail [65]. An illustration of computing power advances relative to time is shown in

Figure 2-2.

Within MD, the trajectories of the atoms are generated by applying ensembles

such as Microcanonical (NVE) and Canonical (NVT) [7]. In the NVE ensemble, the

number of moles, volume, and energy are constant. The exchange between the ki-

netic and potential energies describes the path of the atoms. In the NVT ensemble,

the number of moles, volume, and temperature are constant. The energy created

by straining the material is removed with a Berendsen thermostat. The Berendsen

thermostat allows the velocities of the atoms to rescale towards the desired tem-

perature of 300 K. The velocity Verlet algorithm is used to update the velocity of

the atoms. The flowchart in Figure 2-3 lists the main steps comprising molecular

dynamics simulations.

2.1.1 Mechanical analysis

We calculate the virial stress [94] by



N N
Zk mkvk~vk3 + rk aS=V + kk, (2.1)

V V

where I and J = x,y,z; and N, m, v, r, f, and V are the are the number of atoms,

mass of atom, velocity, position, force, and total system volume respectively.

The engineering strain is defined as:

E = AL (2.2)
LY

where LY is the initial length of the specimen, and ALy is the change in the length

along the deformation direction (which is the y-coordinate). The stress-strain curve

is then used to determine the elastic modulus, E, where o = U22 (tensile stress in the

loading direction):

0(7 A o-
E = -(2.3)

OE AE

Once the stress-strain curves are determined, their integral is taken in order to deter-

mine the toughness:

Ey =fa (E) de, (2.4)

where EV, and ef are the energy per unit volume and strain at failure, respectively.

A higher toughness indicates a greater ability of the material to absorb energy due to

stresses before failure (resulting for instance in a larger fracture process zone). The

Von Mises stress o is calculated as

- o yy)2 + ( -yy - +)2 ( g _ )2 + 6(g 2 + + +o )
oV 2 ,gx C (2.5)

where o-II (I = x, y, z) are the normal components of the stress tensor, and ox, UYz

and o-2, are the shear components of the stress tensor. We apply the above expression

(eq. (2.5)) for the Von Mises stress in plotting the atomic stresses throughout the



loading event.

Point representation

stretching

bending

rotation

Energy

repulsion r

attraction

equilibrium
bond distance

Figure 2-1: Molecular dynamics description. Panel (a): Atoms are represented as points
that have a certain position, velocity, and acceleration. Panel (b): Each atom has an energy
landscape and different bond terms, such as stretching, bending, and rotation between that
atoms. Figure reprinted from [11].

2.2 Reactive Force Field: ReaxFF

Over the past decades, molecular simulation tools have taken various flavors, as shown

in Figure 2-4. Many incorporate MD schemes with various types of potentials such

as Tersoff-Brenner. At the heart of MD are potential energy functions (i.e. empirical

force field (EFF) [25, 23] which depend on the location of the atoms and their respec-

tive energy contributions. The bond interactions can be described as springs (i.e.

simple harmonic equations) that describe the compression and stretching of bonds

and the bending of bond angles. The non-bonded interactions are described by van

der Waals potential functions and Coulomb interactions. The potential functions

(a)
a(t)

r(t) v(t)

(b)
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Figure 2-2: Computing power development and associated quantitative capacity to sim-
ulate atoms with simple interatomic potentials and short cutoffs. For more complex po-
tentials, such as ReaxFF, significantly smaller number of atoms can be simulated. Figure
reprinted from [13].
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that are defined within EFF are fitted against experimental or quantum chemical

data (i.e. training sets) [23]. The total system energy is separated into different

energy contributions:

Esystem = Ebond +Eover +Eunder +Eip+Eval+ Epen + Etors+ Econg +EvdWaals+EcouIomb (2.6)

Since the force field is empirically defined, it should only be applied to systems

similar to the training sets [23, 871. Reactive chemical systems are not properly de-

fined by EFF methods since the shape of the potential function that defines the bond

length/bond energy relationship makes it difficult to accurately determine a param-

eter value near the dissociation limit [23]. For instance REBO, the EFF method

developed by Brener, allows the dynamic simulation of reactions in systems greater

than 100 atoms. Nevertheless, REBO is limited because it excludes non-bond inter-

actions and is based on a relatively small training set [23].

Update velocities
and positions

Max

Fetp i e 2 F wAssign initial t ale number
Se prtcl 4 particle Cluaeof steps true

positions velocities force reached?

Stop simulation
false and analyze

data
NVT: Rescale velocities to control temperature

NPT Rescale system volume to control pressure
NVE: Do nothing

Figure 2-3: Flow chart showing the general methodology of molecular dynamics.

The development of ReaxFF [24] reactive force field offers a more accurate view of

complex chemical systems (specifically for systems undergoing large strain or hyper-

elasticity) and therefore offers an alternative to the Tersoff-type potentials. ReaxFF

is founded on quantum mechanical (QM) principles, such as DFT, and defines the

atomic interactions with QM accuracy [24]. ReaxFF has been shown to more accu-

................ . . ....... .... .. .......



rately describe the material behaviors (e.g. the bond breaking and formation process)

of non metals (C, 0, H, N), metals (Cu, Al, Mg, Ni, Pt), semiconductors (Si), mixed

Si-O systems, silica-water interfaces [78, 24, 26, 83, 68, 10, 19, 18, 29], and biological

materials [12]. This aspect is critical to describe the properties of materials under

large deformation. The ab initio calculations are quite computationally expensive and

thus limit ReaxFF to systems containing a few thousand atoms. The computational

time required by ReaxFF is mostly determined by the complexity of the mathematical

expressions and the necessity to perform a charge equilibration (QEq) at each itera-

tion [72, 9]. As a comparison, ReaxFF is approximately several orders of magnitude

faster than quantum mechanics based on first principles (ab initio) methods. However,

ReaxFF is 20-100 times more expensive computationally than simple empirical force

fields such as CHARMM, DREIDING, or covalent type Tersoff's potentials [9]. The

basic idea behind ReaxFF is to modulate the bond properties (i.e. bond order, bond

energy, and bond distance) and therefore properly dissociate the bonds to separated

atoms [24]. The valence angle terms are bond-order dependent, thereby making their

energy contributions disappear when bonds break. Upon bond dissociation, the bond

terms all smoothly go to zero and therefore no energy discontinuities appear during

the reaction [24]. ReaxFF also describes the non-bond interactions between atoms

by incorporating Coulomb and van der Waals potentials. Indeed, ReaxFF serves as

a link between QM and empirical force fields [12, 9].
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Chapter 3

Size dependence of the mechanical

properties of nanoporous silicon

structures

Indeed, diatoms are fascinating nanoscale structures that incorporate multiple en-

gineering design concepts, perhaps resulting in an adaptation to improve their me-

chanical stability. We hypothesize that the nanoporous geometry of the frustules is

the key to providing enhanced toughness even though the constituting material itself

is inherently brittle. Thereby, the formation of a nanostructured geometry that in-

cludes thin, geometrically confined struts of brittle elements may play a crucial role

in understanding the materials behavior.

Here we utilize the porous structure found in diatoms to develop a bioinspired

nanoporous material implemented in silicon, as shown in Figure 3-1. The material

consists of a porous structure with connected truss elements, where the width w of

the nanotrusses is controlled in our analysis.We note that the goal of this study is not

to develop a model that very closely reflects the specific structure of diatoms. Rather,

our approach is guided by our desire to develop a general model system in which we

can test the effect of the width of the nanotrusses on the bulk material behavior.

The choice of silicon is motivated by the fact that a good interatomic potential,

the first principles based reactive force field ReaxFF, is available for this material,



which has been validated against experimental results for mechanical properties, in

particular large deformation and fracture of silicon [15, 10]. By varying the size of the

constituting silicon nanostructure, we examine associated mechanical properties, as

well as fracture and toughening mechanisms, facilitated through a series of molecular

dynamics simulations in a computational materiomics framework [34].

3.1 Model geometry

We consider silicon crystals with uniform and ordered rectangular voids. All struc-

tures have an equivalent void length and height of 76 A by 33 A, respectively. The

only parameter varied here is the wall width w, which ranges from 5 A to 76 A.

Figure 3-1 shows the geometries considered here, representing different systems with

variations of the wall width, w. The number of atoms varies between 672 to 15,232

from the smallest to the largest width systems. The simulation cell has dimensions

of 217.20 A x 152.039 A x 10.86 A in the x-, y- and z-direction.

3.2 Simulation approach

The structure is relaxed to its minimum potential energy and then loaded under

tension along the [1 0 0] direction as shown in Figure 3-1(a), at a strain rate of

1x10 10 s-1. The system has periodic boundary conditions in all three directions,

with a constant temperature of T=300 K controlled by the Nosd-Hoover thermostat.

Deformation is applied by uniaxially increasing the size of the periodic simulation

cell, while keeping all other dimensions of the simulation cell constant. Since the

horizontal ligaments are interconnected with the vertical ones and because the poison

effect along the non-loading directions are not considered, the stress state is globally

multiaxial. We use a time step of 1 femtoseconds. The initial, unstrained silicon

structure is shown in Figure 3-1(b). Aside from the variations in the geometry,

all simulations are carried out under identical conditions, enabling us to perform

a systematic comparison.
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Figure 3-1: Geometry of the bioinspired silicon structure, and setup used in our simula-
tions. Panel (a): Three-dimensional schematic of the silicon structure, with periodic bound-
aries along the x, y, and z directions. The arrows indicate tensile load applied uniformly
along the structure. Panel (b): Initial geometry of structures considered here, illustrating
the wall width (w, definition indicated in one of the structures) variation in the geometry.
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3.3 Results and discussion

We now present a systematic analysis of the effect of changes of the wall width w on

the resulting mechanical behavior (see Figure 3-1 for geometry). Figure 3-2 shows the

stress-strain graphs for all sizes considered here, where the wall widths range from w

= 5 A to 76 A. For smaller wall widths, we find that a greater plastic regime, lower

maximum stress, and a lower modulus. Conversely, for larger wall widths we find a

reduced plastic regime, larger maximum stress, and a higher modulus. The behavior

of the material at larger wall widths more closely resembles that of bulk silicon, which

is inherently brittle. However, due to lowering the wall width of the structure it is

possible to dramatically change the behavior of the material towards a more ductile

fashion, and facilitate the occurrence of very large deformation up to 80% without

breaking. We ascribe the decrease in the maximum stress and the modulus with

lower wall widths from free surface effects and a change of the stress distribution in

the sample. Furthermore, the prominence of the plastic regime found for decreasing

wall widths is not solely a phenomena caused by surface effects, but one that is

augmented by the nanoscale porous architecture, which allows for a conformational

change from a rectangular to hexagonal shape due to the change in the stress state,

becoming more uniform as the wall width decreases.

We proceed with an analysis of the stress fields and the structural changes of the

nanostructure during deformation of the material. Figure 3-3 shows the Von Mises

stress field in the elastic regime, at 7% strain, for different wall widths. It can be

recognized that for smaller wall widths, the stress is more homogeneously distributed

throughout the system, and that a greater fraction of the atoms feature a higher stress

level. In larger systems, the formation of a stress concentration at the corners can

be recognized, suggesting a possible point for the nucleation of cracking or shearing.

Figure 3-4 shows the Von Mises stress field at the maximum stress, for different wall

widths. Here the strain value at which the snapshot was taken changes for the differ-

ent cases considered (see stress-strain graphs shown in Figure 3-2), and the relevant

strain level is indicated in the plot. For widths smaller than 11 A, the structure at
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the maximum stress becomes hexagonal at the maximum stress, representing a sig-

nificant structural transformation compared with the initial rectangular structure. It

is evident that the stress is distributed homogeneously throughout the structure. For

larger wall widths, high stresses are concentrated around the corners and in diago-

nally oriented regions in the sample. Moreover, the initial, rectangular shape of the

structure is maintained up to the maximum stress, suggesting a limited capacity of

the system to undergo plastic deformation. Indeed, further analysis at larger strains

(during the failure process) confirm this conjecture. Figure 3-5 depicts the Von Mises

stress field during failure for different wall widths, where again the strain value at

which the snapshot was taken is indicated in the plot. For the systems with wall

widths of 11 A and 22 A, necking and formation of beaded molecular structure is

observed, quite similar to what has been seen in earlier studies of metal nanowires.

At widths of 43A and larger, we observe that nanocracks initiate from the corners

and then arrest, leading to further necking. Shear deformation in these thinned parts

of the structure contributes to the final failure of the samples. For widths of 76 A

and similarly large systems we observe the formation of voids within the sample along

the plane of shear. The shearing direction is orientated at roughly 450 degrees with

respect to the tensile direction. Failure mechanisms in silicon nanowires examined in

earlier molecular dynamics and experimental studies show similar results as observed

in our simulations, in that the fracture process zone undergoes amorphization [40, 44].

In our simulations, the region surrounding the failed region tends to be amorphous.

We estimate that the amount of amorphization (determined from the edge where

failure takes place) extends at most 10-15 A into the sample. Crack arrest is due

to the nanoscale geometry, and can also be explained by simultaneous cracking. For

example, for the 43 A wall width, both cracks initiate on the same ligament but on op-

posite edges. One crack travels through the vertical ligament (which is the dominant

crack), while the other crack travels into the adjacent horizontal ligament at roughly

450 degrees to the loading plane. The crack that travels perpendicularly through the

vertical ligament has less distance to traverse, and thus passes through the ligament

before the other crack can. Therefore, the 450 degree crack arrests since the system



is no longer intact. For slower strain rates of 1x109 s-1, the crack arrest mechanism

still occurs, but wedge which is formed from the nondominant crack is smaller than

those from 1x10 10 s-1.

w=11A w=22A

Von Mises stress [GPa]

w=43A w=76A 10
8

6

4

2

0

Figure 3-3: Von Mises stress field in the elastic regime, at 7% strain, for different wall
widths. For smaller wall widths, the stress is more homogeneously distributed throughout
the system, and a greater fraction of atoms have higher stress. In larger systems, a stress
concentration at the corners can be recognized.

The analysis reviewed above suggests that the change in wall width induces a

change in the stress distribution during deformation. This is confirmed with an

analysis of histogram plots of the Von Mises stress, as shown in Figure 3-6, where

results are shown for w 11 A and 76 A. Figure 3-6(a) depicts the results at the

maximum stress. For w 11 A the stress distribution shows a peak at a larger

stress than at w = 76 A. Figure 3-6(b) depicts the results during failure. It is found
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that the stress distribution in the w = 76 A case is much different from the one in

the w =11 A case. For w = 11 A, the stress distribution shows a peak at a much

larger stress (6.5 GPa) compared with a peak at w = 76 A (2.8 GPa) along with

a broader tail. The broader tail in the large system indicates a more heterogeneous

distribution of the stress in the sample. Finally, in Figure 3-7 we summarize the

effect of wall width variations on various mechanical parameters. Figure 3-7(a) plots

the variation of the plastic regime, Figure 3-7(b) the toughness, Figure 3-7(c) the

maximum stress, and Figure 3-7(d) the elastic modulus. Both the maximum stress

and modulus are found to increase with the wall width. A general trend of larger

plastic regimes for decreasing wall widths is observed as well, reaching plastic regimes

approaching 40% for the smallest systems considered with a wall width of a fraction of

a nanometer. For wall widths larger than 27 A, the toughness plateaus at around at

9x108 J/M 3 . Between 16 A and 27 A a sharp increase in toughness is observed, with a

maximum at 16 A. Below 16 A, the toughness drops to around 7x108 J/m 3 , denoting

an inverse trend. The reason for the greater variation in toughness for w = 27 A are

fluctuations in the initial deformation mechanism from necking to crack formation,

perhaps due to the fact that this system is close to the critical dimension between the

transition between the two types of extreme behavior. The results depicted in Figure

3-7 clearly show that by controlling the wall width, a significant improvement of the

material performance can be achieved. Specifically, at a critical dimension of 18 A,
the material features the greatest possible toughness. Overall, the study shows that

the bioinspired silicon nanoporous bulk material provides great toughness at great

deformability.

3.4 Conclusion

By employing an atomistic simulation method derived from first principles quantum

mechanics, we have examined the deformation and failure behavior of bioinspired

porous silicon structures as shown in Figure 3-1. The inspiration for the structural

design is based on porous silica cell walls of diatoms, unicellular algae that boast an
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Figure 3-4: Von Mises stress field at the maximum stress, for different wall widths
(the strain value at which the snapshot was taken is indicated in the plot). For widths
smaller than ~ 11 A, the structure at the maximum stress becomes hexagonal, and the
stress is distributed homogeneously throughout the structure. For larger wall widths, high
stresses are concentrated around the corners and in diagonally shaped regions in the sample.
Moreover, the initial, rectangular shape of the structure is maintained.
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Figure 3-5: Von Mises stress field during failure for different wall widths (the strain
value at which the snapshot was taken is indicated in the plot). For the systems with wall
widths of 11 A and 22 A, necking and formation of beaded molecular structure is observed.
At widths of 43 A and larger, cracks initiate from the corners and then arrest, leading to
further necking. Shear deformation in these thinned parts of the structure contributes to
the final failure of the samples. For widths of 76 A and similarly large systems we observe
the formation of voids within the sample, where the region surrounding the failed region is
amorphous. The failure mechanism remains similar for the wall widths below 43 A, and is
characterized by a structural change from a rectangular to hexagonal shape. An analogy to
plastic hinges can be drawn to describe the mechanism for allowing large deformation. For
larger systems, however, the failure mode is consistently crack propagation, an effect that
is confirmed to exist for varying strain rates.
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Figure 3-6: Histogram plots of the Von Mises stress, (a) for w = 11 A and 76 A (at the
maximum stress), and (b) for w = 11 A and 76 A during failure. Panel (a): For w = 11 A
the stress distribution shows a peak at a larger stress than at w = 76 A. Panel (b): During
failure, the stress distribution in the w = 76 A case is much different from the one in the w
= 11 A case. For w = 11 A, the stress distribution shows a peak at a much larger stress (s
6.5 GPa) compared with a peak at w = 76 A (~ 2.8 GPa) along with a broader tail. The
broader tail in the large system indicates a more heterogeneous distribution of stresses.
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Figure 3-7: Effect of wall width on (a) the plastic regime, (b) toughness, (c) maximum
stress, and (d) elastic modulus. Both the maximum stress and modulus are found to increase
quasi-linearly with the wall width. A general trend of a higher plastic regime for decreasing
wall width is observed as well. The plastic regime is estimated by measuring the length of
the linear plateau region which is associated with constant stress. For wall widths larger
than 27 A, the toughness plateaus at around at 9x10 8 J/m 3 . Between 16 A and 27 A a sharp
increase in toughness is observed, with a maximum at ~ 16 A. Below 16 A, the toughness
drops to around 7x108 J/m 3 , denoting an inverse trend. The error bars are determined by
dividing the standard deviation by the square root of simulation runs (that is, the standard
error of the mean (SEM)). All simulations were repeated four times. For graphs (c) and (d),
the error bars are smaller than the data points surrounding it so they cannot be identified
in the plot.
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intriguing hierarchical design and interesting mechanical properties (Figure 1-3).

Through carrying out a systematic analysis, we have captured the variation in me-

chanical properties, as summarized in Figure 3-7. Through the design of a nanoporous

structure with ultra-thin trusses, the material response of silicon has been altered from

brittle to highly ductile, where the most ductile systems with wall widths below 1

nm feature a plastic regime of almost 40%, and a modulus of 2.3 GPa. The most

brittle responses are observed for the systems with the largest wall width, with a

vanishing plastic regime, albeit a larger modulus of more than 30 GPa. We find that

an important aspect in promoting the ductile response of the material is the abil-

ity to alter the initial rectangular shape into a hexagonal one, which occurs for w <

33 A. Interestingly, a Hall-Petch and inverse Hall-Petch like effect was observed for

the toughness; with a maximum toughness of 1.2x109 J/m 3 corresponding to w =

16 A (see, Figure 3-7(b)). In comparison, the toughness values of high-performing

engineering bulk amorphous materials range from 10 to 100 x106 J/m 3 for ceramics

and lxO106 J/m 3 for Ti alloys [45]. Plain lightweight aggregate concrete and steel

fiber reinforced concrete has a compressive toughness of 150x103 J/m 3 and 290x103

J/m 3 , respectively [46]. In light of these toughness values, the material considered

here shows a manifold increase of the toughness.

The knowledge derived from the simulations reported here heralds a paradigm

shift in the design of conventionally brittle materials by showing that its mechanical

response can by greatly altered by simple alteration of its structural geometry at the

nanoscale without the need to introduce new constituents. This merger of material

and structure is a powerful concept that could provide new ideas for a broader class

of bioinspired materials with advanced properties. Specifically, our study provides

a strategy to transform an inherently brittle material towards a very ductile one,

illustrating how a weakness is turned into a strength simply by controlling its struc-

ture. This is achieved by providing large elasticity and plasticity by adding ordered

nanopores to a brittle system, where the underlying mechanism change is due to

surface effects and a change in the stress distribution. The deformation mechanism,

incorporating structural changes in the organization of the material in the bulk sys-



tem, is unique and does not strictly resemble that of one-dimensional nanowires. The

overarching feature of diatom shell structures is their nanoscale porosity, which we use

here as a template in finding mechanical properties of similar structures. We achieve

this by applying the ordered nanoporous design concept found in diatoms shells in de-

veloping a new silicon nanomaterials where key design features are transferred. Such

a material could have many applications in the development of structural materials,

filters, optical materials, and many others. For the fabrication of the class of ma-

terials discussed here, self-assembly techniques could be used, for example based on

protein, peptide or other molecular scaffolds [1, 91]. A similar strategy is found in the

synthesis of diatoms, providing a possible path to manufacturing these materials with

great precision to reach relevant length-scales [75, 43]. The great abundance of brittle

materials in nature - such as silica or other minerals, combined with novel energy

efficient self-assembly techniques, could provide a new route for the development of

lightweight, strong and tough materials with small ecological footprint.

The studies reported here have focused solely on variations of the wall widths, and

does not address other design parameters such as the aspect ratio or the overall ge-

ometry of the nanostructure. Further analysis of other geometric variables may thus

be another promising avenue of future work and could provide additional insight in

optimizing the material. It may also be interesting to incorporate topology optimiza-

tion to tailor certain mechanical properties. In the next chapter, a detailed analysis

of the mechanical properties and advantages of hierarchical structures representative

of diatom frustules is established.



Chapter 4

Size and hierarchy dependence of

the mechanical properties of

nanoporous silica structures

As diatom structures are relatively complex, reaching multiple degrees of hierarchy

and size, revealing the intricate interplay between structure and mechanical response

requires delicate and systematic analysis. The previous chapter established a frame-

work on size effects on the mechanical response of silicon mesh structures. In order

to understand the diatom's mechanical properties more fully, we now examine hier-

archical silica structures, a common feature observed in diatoms. The mechanical

properties of diatoms are quite attractive, allowing for very high toughness, a quality

that is indeed attributed to the complex hierarchical topology resembling honeycombs

within honeycombs. In this chapter we study two structures resembling those of Fig-

ure 1-4 [331.

4.1 Model geometry

We consider a structural design composed of alpha-quartz crystals. One structure is

a foil or infinitely tall thin wall, whereas the other is a mesh composed of interlocking

silica foils thus forming uniform and ordered rectangular voids. Since the simulation



box is periodic, the foil structure can be thought of as a periodic array of thin foils

with a spacing s equivalent to the mesh structure. Figure 4-1 shows the geometries

considered here. Both the mesh and foil structures are exposed to free surfaces. The

foil has free surfaces parallel to the y axis; and the mesh has free surfaces along the

x and y axis.

All mesh structures have an equivalent void dimension of 76 A by 30 A. The

only parameter varied here is the wall width w, which ranges from 5 A to 72 A for

both foil and mesh (see Figure 4-1). The number of atoms varies from 750 to 17,000

for the smallest to the largest width silica systems. The largest simulation cell has

dimensions of 151 A x 196 A x 8.5 A in the x-, y- and z-direction. We performed a

relaxation for 80 ps of a 31 A foil structure with free surfaces along the x and y axis.

It was found that there was negligible average stress after relaxation. This result

could be explained since surface reconstruction does not take place.

4.2 Simulation approach

All structures are equilibrated under the canonical ensemble at 300 K for a time of 10

ps and then loaded under uniaxial strain loading along the [1 2 0] direction as shown

in Figure 4-1(a), at a strain rate of 1x10 10 s-1 at 300 K. The system has periodic

boundary conditions in all three directions and the temperature is controlled by the

Berendsen thermostat [7]. Deformation is applied by uniaxially increasing the size

of the periodic simulation cell in the loading direction only, while keeping all other

dimensions of the simulation cell constant. We use a time step of 0.2 femto-seconds.

The initial, unstrained silica structure is shown in Figure 4-1(b). Aside from the

variations in the geometry, all simulations are carried out under identical conditions,

enabling us to perform a systematic comparison.
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Figure 4-1: Geometry of the hierarchical bioinspired silica structure, and setup used
in our simulations. Panel (a): Three-dimensional schematic of the silica mesh structure
(shown on left), with periodic boundaries along the x, y, and z directions. On the right, the
geometry of the silica foil array structure is shown, and has periodic boundaries along the
z and y directions with free surfaces only along the x axis. The spacing s between the foils
is equal to that in the corresponding mesh structure. The crystallographic orientation is
the same for all silica structures considered. The lowest level of hierarchy represented here
is the foil, and the highest is the mesh structure. The arrows indicate tensile load applied
uniformly along the structure. Panel (b): Initial geometry of mesh structures considered
here, illustrating the wall width (w, definition indicated in one of the structures) variation
in the geometry. The inset shows a detailed view of the relaxed surface structure. Wall
widths are similarly varied for the foil as in the mesh structure.
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4.3 Results and discussion

We begin our analysis by focusing on the effect of changing the wall width on the

mechanical properties of the two levels of hierarchy (see Figure 4-1(a) for the two

geometries considered, that is, foil and mesh). As shown in Figure 4-1, the wall

widths are varied between w = 5 A to 72 A for both the foil and mesh structures.

From a structural hierarchy perspective to materials design, the first order of hierarchy

consists of a foil oriented such that the only two free surfaces are in the x direction.

The second order of hierarchy is composed of a mesh of interlocking foils with voids

and free surfaces in both x and y directions. The z axis has no free surface, and thus

the structure can be described as consisting of infinitely tall walls, or foils.

Figure 4-2(a) shows the stress-strain response of the foil structure for varying

widths w, and Figure 4-2(b) shows the same data for the mesh geometry. Both the

foil and mesh structures show an increase of deformation in the plastic regime, a

lower modulus, and lower maximum stress with decreasing wall width w. However,

the silica mesh structures have a much greater plastic regime than the silica foil. The

first important observation made here is that even though silica is considered a brittle

material, the results show that it is possible to transform it into a ductile system for

small (nanoscale) wall widths, which reach a maximum failure strain of 90% and

120% for the silica foil and the mesh structure, respectively. In a similar fashion as

the foil structures, the silica mesh also shows an increased modulus and maximum

stress for larger wall widths. The plastic regime in the mesh structure decreases

with increasing wall width, albeit showing a less severe drop than in the case of

the foil structure. Interestingly, the maximum tensile stress is reached at roughly

the same strain of 34% for the silica foil, for all w 15 A (see Figure 4-2).Another

important difference between the foil and mesh structures lies in a gradual versus a

sharp increase of elastic modulus for increasing wall width, respectively. Furthermore,

the foil structures show a stiffening effect at widths w > 15 A. Previous studies have

also shown either stiffening or softening effects, which are affected by the orientation

of the loading (since silica is anisotropic). For example, silica nanorods modeled



using the BKS and TTAM potentials showed a softening effect when under tension

[93, 79]. Another study conducted ab initio simulations using the PAW method

and found a pressure dependence on the bulk modulus of silica [50]. Experimental

measurements of silver nanowires loaded in tension along the [0 1 1] direction found

a stiffening behavior [90]. Copper nanowires also show either stiffening or softening,

depending on the crystallographic orientation, as shown by earlier analyses using the

EAM potential [54].

In order to gain a deeper understanding of the corresponding mechanisms that

explain the size dependent behavior of the material, we now proceed to analyze the

stress fields during deformation. We first turn to the failure mechanisms found in the

silica foil structures displayed in Figure 4-3. We find that void formation occurs for

w > 15 A, and first nucleate near the surfaces. Subsequently, voids coalesce and grow,

ultimately leading to fracture. The trajectory of void nucleation events occurs roughly

on one plane inclined to the loading axis, and for the largest w = 72 A structure, they

bifurcate onto two planes, allowing for larger regions of void coalescence. In all silica

foil structures, beading down to thin atomic chains is observed towards the end stages

of failure before complete fracture is observed. Although no clear signs of dislocation

or shear band nucleation are observed, the initial mechanisms of cavity nucleation

are consistent with other molecular dynamics simulations and experimental studies

of silica deformation [8, 76]. Previous studies on small diameter nanowires (similar

in size to those in our study) have determined that the mechanism of yielding by

dislocation is absent, and demonstrated that the main mechanical instability is a

disorder-order transformation, resulting in the reduction in size of the nanowire neck

until single atom chains emerge [49, 63].

We proceed with analysis of the silica meshes as shown in Figure 4-4, which shows

the equivalent von Mises stress field at the maximum stress. For larger wall widths,

high stress is mostly concentrated on the surface and specifically near the edges,

thus suggesting possible locations for crack or shear nucleation. However, with lower

wall widths, the stresses become relatively homogeneous throughout the structure.

For large deformation, the void shapes gradually change from a rectangular to a
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Figure 4-2: Stress-strain graph of silica foil (panel (a)) and mesh structure (panel (b)), for
all sizes (wall widths range from w = 5 A to 72 A). Panel (a): For smaller wall widths, there
is a greater plastic regime, lower maximum stress, and lower modulus. Thus, due to the
lowering of the wall width of the structure (w), the system behaves in a more ductile fashion
and sustains very large deformation up to 115%. The strain hardening region observed for
w = 52 A is due to a temporary crack arrest due to the stretching and shearing of a
secondary horizontal ligament. The crack continues its path once the secondary ligament
stops deforming. Panel (b): For wall widths above 15 A, there exists a plastic regime of
about 1% to 5%. The greatest deformation is obtained for the smallest wall width of 5 A.
Failure mechanisms are characterized by void formations near the center or edge of the foil
which then coalesces with other voids until the structure is no longer intact. Cracks are
not observed for the foil, whereas in some mesh structures, cracks occur. The reason for
stiffening for wall widths > 15 A is due to nonlinear elasticity within the core, along with a
Poisson effect as seen in earlier studies.
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Figure 4-3: Von Mises stress field during failure, for different foil wall widths (the strain
value at which the snapshot was taken is indicated in the plot). The Highest stresses
are localized near the failure zones and the surface. The figure also reveals the deformation
mechanisms, showing the locations of void nucleation and coalescence. Bifurcation of voided
regions and shear like behavior is observed for w = 72 A. A beading mechanism narrowing
down to thin strings of atoms is observed for the final stage in deformation. In order
to improve image clarity, we only show the stress values associated with silicon atoms
when plotting the stress fields. Generally, the oxygen atoms have a much broader stress
distribution than silicon atoms, and therefore the stress patterns are difficult to observe if
both atom types are shown.
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hexagonal one for decreasing wall widths, and can be clearly seen for w 31 A. High

levels of shear stress also manifest in a diagonal pattern as shown in Figure 4-5 for

w > 31 A , which facilitate possible regions of void nucleation and the start of failure.

Once crack failure starts, the stress is concentrated around the fracture process zone,

as shown in Figure 4-6. The deformation mechanisms observed for varying wall

widths are dramatic in that they correlate with the peaking of toughness, and can be

summarized as follows. For w > 62 A and w < 21 A, the dominant failure mechanisms

are brittle crack propagation, and beading down to thin atomic chains respectively.

However, for 21 A w 62 A, crack propagation and shear mechanisms occur in

a competing fashion, and allow for increased toughness. For example, for w = 52

A structure, we observe a crack arrest phenomenon and corresponding increase of

tensile stress from 2 GPa to 2.8 GPa, which is due to shear mechanisms occurring

within the junctions of the mesh elsewhere (see Figure 4-7).

The analysis discussed in the preceding paragraph explains the remarkable stress-

strain response of mesh structures with thin wall widths, as shown in Figure 4-2(b).

The key to explain these is the geometric pattern that allows large deformations to be

accommodated by the mesh by changing from a rectangular pattern to a hexagonal

one at large strains (see, e.g. in Figures 4-4 and 4-6), specifically for wall widths below

31 A. The fundamental reason for these very large strains without failure is due to

the more homogeneous distribution of stresses and the geometry transformation from

rectangular to a hexagonal shape for smaller wall widths.

In Figure 4-8, we summarize the effect of wall width variations and hierarchy

level on the mechanical properties - the plastic regime, toughness, maximum stress,

and ductility. In all structures considered here, the plastic regime increases with

decreasing w. The maximum stress and modulus both increase with the wall width,

and the ductility increases for smaller wall widths. For the largest wall width in

silica and silicon structures, the range of ductility is between 30 % to 50 %. The

greatest ductility is observed for the silica mesh with smallest wall width of 5 A,

reaching 120%. The silica foil shows a gradual increase in modulus with width, with

a maximum of 6.7 GPa for w = 72 A, whereas the mesh structures sharply increase in
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Figure 4-4: Von Mises stress field at the maximum stress, for different mesh wall widths
(the strain value at which the snapshot was taken is indicated in the plot). For widths
smaller than ~ 31 A, the structure at the maximum stress becomes hexagonal, and the
stress is distributed homogeneously throughout the structure. For larger wall widths, high
stresses are concentrated around the corners. Moreover, the initial, rectangular shape of the
structure is maintained. In order to improve image clarity, we only show the stress values
associated with silicon atoms within the silica system.
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Figure 4-5: Shear stress osy taken at maximum stress for the system with wall width w =

52 A. High regions of shear stress form a diagonal pattern and suggest possible areas where
deformation occur. We show multiple sets of the periodic cell so that the stress pattern can
be clearly seen. In order to improve image clarity, we only show the stress values associated
with silicon atoms within the silica system.
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Figure 4-6: Von Mises stress field during failure for different mesh wall widths (the strain
value at which the snapshot was taken is indicated in the plot). For the systems with wall
widths of 15 A and 31 A, necking and formation of beaded molecular structure is observed.
At widths of 52 A and larger, cracks initiate form the corners. For w 31 A, we observe the
formation of voids within the sample, specifically within the regions surrounding the failure
process zone. The failure mechanism remains similar for w 52 A, and is characterized by
a structural change from a rectangular to a hexagonal shape. An analogy to deformation
in mascroscopic plastic hinges can be drawn to describe the mechanism for accommodating
large deformations. For larger systems, however, the failure mode is consistently crack
propagation, an effect that is confirmed to exist for varying strain rates. In order to improve
image clarity, we only show the stress values associated with silicon atoms within the silica

system.



shear &
crack

pure
cracking

pure
beading

0 20 40 60 84

Width[A]

0 0.2 0.4 0.6
Engineering strain

Shear Stress [GPa]
10

5

0

-5

-101

0.8

Figure 4-7: Panel (a): Toughness map with corresponding failure mechanism for the

silica mesh. Panel (b): Toughening and stiffening mechanisms are caused by competing

mechanisms of shear and crack formation. The crack tip opening displacement (CTOD)
measurement reveals crack arrest and is plotted against the corresponding stress-strain data

which reveal how well correlated both mechanisms are. Panel (c) shows the locations of

shear and crack formation. For purposes of clarity, only the silicon atoms are shown.

1.5
C.,

p1.2

0.9

r 0.6

0.3

0.0

(b)

a.
0-3

S2C)

1

0



modulus, reaching 36 GPa and 29 GPa for silicon and silica meshes, respectively. The

effect of hierarchy on toughness is quite striking because the foil does not show a size-

dependent toughness peaking response, as was observed for the meshes, and because

it has a consistently lower toughness than the meshes. For example, the maximum

toughness observed in silicon and silica meshes are 1.20 x 109 J/M 3 and 1.29 x 109

J/m 3 , respectively, yet the silica foil reaches only 0.60 x 109 J/m 3. The reason for

greater toughness in the higher hierarchy of meshes lies in competing mechanisms of

shear and crack, wherein crack arrest is achieved either through shearing of another

foil subcomponent in the mesh structure (as observed in the silica mesh, w = 52

A), or through simultaneous cracking of different regions (as observed in the silicon

mesh, w = 43 A). These competing mechanisms are enabled through the hierarchical

assembly of the foil elements into the mesh structure, and could not be achieved in

unit foil structures alone. This result demonstrates that including higher levels of

hierarchy are beneficial in improving the mechanical properties and deformability of

silica structures.

4.3.1 Surface reconstruction

Surface reconstruction may occur and may have some effect on the mechanical be-

havior. For example, a previous molecular dynamics study reported a stiffening of

silicon nanowires once the surfaces were reconstructed [92]. For a 1.05 nm thick

nanowire, the modulus increased from approximately 150 GPa to 160 GPa once the

[001] surface was reconstructed. The authors attributed this stiffening effect from

bond saturation as reconstruction takes place. A previous study used ReaxFF and

observed reconstruction of a ZnO surface after 300 ps at 700 K [74]. In another study,

it was shown that a total time-scale of 240 ps was required to obtain a reconstructed

silicon surface by an annealing process with the Tersoff potential and a total system

size of 308 atoms [57]. Although it is expected that our ReaxFF based approach can

capture surface reconstruction in principle, it is computationally expensive to capture

this due to associated time-scale and system size, and was thus not observed in our

simulations. Indeed, for small systems such as 1,000 atoms, ReaxFF could feasibly
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showing the effect of wall width on (a) the plastic regime, (b) toughness, (c) maximum
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Below 16 A, the toughness drops to around 7x108 J/m 3 , denoting an inverse trend. In the
silica mesh the highest toughness is observed for wall widths of 41 A, reaching values ~
1.29x10 9 J/m 3 . The silica foil generally increases in toughness with the wall width, yet has
lower toughness when compared to the mesh structures. Thus, by increasing the level of
hierarchy, a higher toughness, maximum stress, and modulus can be achieved.
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simulate the time scales listed above. However, for systems larger than 10,000 atoms,

ReaxFF would be very computationally expensive. The investigation of surface re-

construction and its effects on the mechanics of hierarchical silica structures could be

an interesting subject of future studies.

4.3.2 Preliminary investigation on the impact of the mechan-

ical response from termination of silica

When exposed to a natural environment, silica surfaces generally become terminated

with hydrogen after exposure to moisture. Results have been obtained in previous

studies of silica nanorod deformation in the presence of water using semi-empirical

quantum mechanics methods [79], where the authors concluded that strained siloxane

(Si-0-Si) bonds are attacked by water which results in lower stress and lower failure

strain of the silica nanorod, compared to a dry silica nanorod.

In the following investigation we consider two cases of silica surfaces: 1) bare

silicon surfaces that are under coordinated, herein referred to as non terminated, and

2) hydrogen bonded to a surface of oxygen, herein referred to as non terminated.

Two geometries are considered, foils of w-15 A and meshes of w=5 A. One common

process by which surface termination is achieved is through contact with water to the

silicon surface dangling bonds of silica. The water dissociates into OH and H, with the

hydroxide bonding to the silicon. In our simulations, all structures are equilibrated

under the canonical ensemble at 300 K for a time of 10 ps and then loaded under

uniaxial strain loading along the [1 2 0] direction at a strain rate of 1x1010 s-1 at

300 K. The system has periodic boundary conditions in all three directions and the

temperature is controlled by the Berendsen thermostat [7]. Deformation is applied by

uniaxially increasing the size of the periodic simulation cell in the loading direction

only, while keeping all other dimensions of the simulation cell constant. We use a

time step of 0.2 femto-seconds. The initial, unstrained silica structure is shown in

Figures 4-9 and 4-10.

As the terminated structures are stretched, the surfaces form various types of



polymorphs with geminal and interacting silanols as the most common. The non

terminated foils have a greater maximum stress than that of the terminated foil, 1.38

GPa versus 1.21 GPa, respectively, as shown in Table 4.1 and Figure 4-9. Ductility

is reduced from 67.2% to 66.2% as the foil is terminated. The results of lowering

ductility and types of observed polymorphs are consistent with other studies [79, 64].

As the meshes are stretched, termination allows a ductility of 250% versus 122%

for non terminated, as shown in Table 4.2 and Figure 4-10. Since the terminated

meshes are fully coordinated, the struts are thinned down to atom chains with a

one silicon atom thickness that are symmetrical, whereas the non termianted meshes

form amorphous like struts that fail earlier. Also, the hydrogens atoms do not seem

to break any Si-O-Si bonds, thus offering another explanation for the hight ductility.

H Terminated Si Surface
max stress [GPa] 1.21±0.01 1.38±0.037
strain at max stress [%] 35±0.5 48±5
failure strain [%] 66.2±3.6 67.5±5

Table 4.1: Comparison between H terminated and Si surface foils of ductility, maximum
stress, and strain at maximum stress).

H Terminated Si Surface
max stress [GPa] 0.84±0.008 0.69±0.023
strain at max stress [%] 244±4.5 105±5
failure strain [%] 250±4.1 122±7

Table 4.2: Comparison between H terminated and Si surface meshes of ductility, maximum
stress, and strain at maximum stress).

4.4 Conclusion

By utilizing an atomistic simulation approach based on the first principles reactive

force field ReaxFF, we have investigated the impact of hierarchical structures on the

mechanical response of the most abundant mineral on earth, silica. By incorporating

a hierarchical design concept inspired by diatoms algae, we have modeled two levels
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of geometric hierarchies: (1) A nanoscale foil of silica, and (2) a nanoscale silica mesh

composed of interlocking foils. These arrangements were then studied with different

wall widths in order to reveal the effect of size-scaling on their mechanical properties.

Next, we presented a comparison between the mechanical properties of silica meshes

and silica foils. Our findings suggest that higher levels of hierarchy are critical to

greatly improving toughness, and can increase toughness by up to 200% from silica

foil to silica mesh.

We ascribe these magnificent improvements in mechanical properties of the mesh

structures from two competing atomistic mechanisms of deformation; shear and brittle

crack propagation. In the toughest silica mesh, for example, a crack arrests due

to shearing of another strut, which consequently stiffens the system (see Figure 4-

7). Interestingly, a size-dependent peaking of toughness was observed for the Si

and SiO 2 meshes; with a maximum toughness of 1.29x109 J/m 3 corresponding to w

= 41 A for the SiO 2 mesh (see, Figure 4-8(b)). The increased toughness of these

nanostructures also makes them viable candidates for impact-resistant lightweight

structures, and this should be tested in further detail. Another powerful concept

derived from this study is the ability to transform a brittle material into a ductile

one by simply manipulating the geometry of a constituent structure to resemble that

of ordered nanopores, or mesh. Three reasons for the high ductility are three-fold,

(1) a homogeneous distribution of surface stress throughout the entire structure, (2)

a conformational change from rectangular to hexagonal pores, and (3) competing

mechanisms of shear and crack arrest.

In a similar fashion to structural materials found in nature, such as bone, nacre,

or diatom shells, it seems that hierarchy is a cornerstone of nanomaterial design

for superior mechanical properties. More importantly, the concept of hierarchical

structures made of the same materials (as demonstrated in this article) is fundamental

in order to fully realize the enormous potential of nanomaterial design. To the best

of the authors' knowledge, this paper is the first to elucidate, at the atomistic scale

and with near quantum mechanical accuracy, the complex mechanical response and

failure mechanisms due to implementing hierarchy in silica. The key contribution



of this work is that by introducing structural hierarchies, a weakness can be turned

to strength, that is, an intrinsically strong but brittle material becomes exceedingly

tough, strong, and ductile. The fact that a similar behavior was found in silicon

[34] suggests that this may indeed be a generic design concept that could be used

for many materials The observation that a weakness is turned into strength is also

reminiscent from recent findings of similar behaviors of H-bonds, which are by itself

also highly brittle, weak elements but reach extreme levels of toughness and strength

once arranged in particular hierarchical patterns [47].

Future research lies in addressing the impact of a larger number of hierarchy

levels on the mechanical properties of silica nanostructures, and the effect of water

on hierarchical silica.



Chapter 5

Superductile, wavy silica

nanostructures

The previous chapters focused on the mesh structures found in many diatoms, such

as Bacillariophyceae, and revealed the impact of hierarchy and size on the mechanical

response. The next step in unraveling the interplay between structure and mechanical

response of diatoms lies in understanding their fantastic ability to stretch while still

being intact. The extreme ductility of certain diatom species and communities is a

fascinating attribute, especially since diatoms are mostly made of amorphous silica,

a typically brittle constituent. In this chapter we focus on a particularly interesting

colonial diatom, Ellerbeckia arenaria because they live in waterfalls and are thus able

to resist significant and continual mechanical stress. These colonies are also able to

elastically stretch up to about 33% [36, 35]! Two possible reasons for this extreme

mechanical response are the intrinsically shaped cell wall and the organic coating,

called mucilage, surrounding the cell wall surface. In this chapter, a new geometry is

analyzed due to its presence in certain diatoms species that are able to elongate and

resist extreme mechanical stress from to the environment. We, therefore, focus on

the corrugated, wavy shape found along the sides of Ellerbeckia arenaria (see Figure

5-1(a)), and propose that this particular shape is essential to providing flexibility

while combining high strength and toughness [32].



5.1 Model geometry

We consider a structural design composed of alpha-quartz crystals. The structure is

a foil or infinitely tall thin wall with varying amplitude and width, resembling a wave,

as seen in Figure 5-1(b). Since the simulation box is periodic, the foil structure can be

thought of an array of waves with a spacing equivalent to the peak-to-peak amplitude.

The z axis has no free surface, and the structure can be described as infinitely tall.

Figure 5-1(c) shows the geometries considered here. All wave structures have an

equivalent wavelength of 63.5 A. The only parameter varied here is the wall width w

and amplitude A, which range from 20 A to 120 A, and 0 A to 60 A respectively (see

Figure 5-1(c)). The number of atoms varies from ~ 650 to ~ 7000 for the smallest to

the largest width silica systems. For the wave structures, the largest simulation cell

has dimensions of 177 A x 63.5 A x 8.5 A in the x-, y-, and z-direction.

5.2 Simulation approach

All structures are equilibrated under the canonical ensemble at 300 K for a time of

10 ps and then loaded under uniaxial strain loading along the [1 2 0] direction as

shown in Figure 1(b), at a strain rate of Ix1010 s1 at 300 K. The system has periodic

boundary conditions in all three directions and the temperature is controlled by the

Berendsen thermostat [7]. Deformation is applied by uniaxially increasing the size

of the periodic simulation cell in the loading direction only, while keeping all other

dimensions of the simulation cell constant. We use a time step of 0.2 femto-seconds.

The initial, unstrained silica structure is shown in Figure 5-1(c). Aside from the

variations in the geometry, all simulations are carried out under identical conditions,

enabling us to perform a systematic comparison.

5.3 Results and discussion

Here we present our analysis on the effect of altering the amplitude and wall width on

the mechanical properties of the silica wave structures (see Figure 5-1(c) for the two
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geometries considered). As shown in Figure 5-1(c), the wall width w and amplitude

A, which range from 20 A to 120 A, and 0 A to 60 A respectively. These structures

resemble those found in some diatoms, such as Ellerbeckia arenaria.

The stress strain response for all structures is shown in Figure 5-2. Here we observe

a maximum strain of 270% for the structures with largest amplitude, 60 A and w of

51 A and 80 A. Interestingly, the initial modulus of these structures is roughly ten

times lower than those with lower amplitude. For structures with largest width and

lowest amplitude, the greatest modulus and maximum stress are reached: E = 14.4

GPa and om,= 5 GPa. The general trend is for decreasing failure strain, and greater

modulus and maximum stress as the wall width is increased and the amplitude is

lowered.

Next, we analyze the effect of altering the wall width and amplitude on the tough-

ness, ductility, maximum stress, and modulus, as seen in Figure 5-3. The toughest

response is seen for amplitudes below 30 A and greater than 51 A. It is important to

note that these structures are defect free, and thus the upper limit on toughness can

diverge from experimental ones. Ductility is highest, reaching ~270%, for amplitudes

of 60 A, and 51 A w 80 A. The largest maximum stress is found for 0 A A 15

A of and 80 A w 120 A. Toughness versus modulus is compared in Figure 5-3 (c),

showing that they are both positively correlated for decreasing amplitude. However,

the increased toughness and modulus comes at the expense of ductility. The structure

with greatest toughness of 1.3 GJ/m 3 corresponds with a relatively low ductility of

~50%.

The observed deformation mechanisms are closely linked to the mechanical re-

sponse of each structure. In Figure 5-4 we compare the Von Mises stress fields of

three structures and the corresponding deformation mechanisms during failure which

correlate with three distinct mechanical responses: high toughness, high ductility,

and high stress. The structure with highest toughness is shown in Figure 5-4 (a), and

contains a significant portion of the stress to form a straight line, and lower stress near

the curved regions. As failure occurs, cracking initiates near the corners and prop-

agates in a diagonal shearing fashion. Void formation dictates the path of cracking,
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Figure 5-2: Stress-strain graph of silica wave structures, for w = 20 A panel (a), w = 51 A
panel (b), w = 80 A panel (c), and w = 120 A panel (d). Panel (a): The structures of lowest
width, 20 A, resist a maximum stress of 1.5 GPa, seen in A = 20 A. For A = 60 A, w = 20 A,
the structure fails immediately upon loading. In A = 30 A, w = 20 A, the structure unfolds
and straightens, thus allowing for steep increase and plateau in stress at 100% strain. Panel
(b): The structures with amplitudes of 15 A and 30 A increase in brittleness when the wall
width is increased. However, for A = 30 A the ductility is drastically increased to 283%
strain. The gradual increase in stress indicates subtle unfolding and eventual straightening
of the structure. Panel (c): As wall widths are increased to 80 A the maximum stress rises
for all structures, but also fails sooner than structures with smaller widths. Panel (d): The
highest stress is observed, reaching 5 GPa for A = 15 A, w = 120 A. However, brittleness
increases dramatically and the unfolding mechanisms is no longer observed for A = 60 A, w
= 120 A, which fails at 130% strain. Failure mechanisms characteristic of the most brittle
structures, such as A = 15 A, w = 120 A, are crack and shear, along with void formations
that coalesce with other voids until the structure is no longer intact. Bulk silica has many
defects which allow for its brittle nature. We performed a simulation of periodic bulk silica
with a penny shaped crack 5 A wide and 120 A long, that extended through 120 A of silica,
that failed at 12% strain and reached a maximum stress of 5.3 GPa.
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while the shearing effect breaks off the outermost surface of the voids in a sequen-

tial manner, similar to a beading mechanism. For structures with highest ductility,

the deformation path is unfolding and finally beading. The unfolding mechanism

encompasses the straightening of the central, or core structure, while the wave peaks

remain in the initial conformation and open up slightly. Rotation of the core region is

enhanced by single void formation near the corners. The core region is defined as the

area bounded by the inner peaks of the wave. For structures with maximum stress,

the deformation mechanism is mainly cracking, with very little shear deformation.

(a) A=15A w=120A
E = 36%

(b) A=15A w=120A
E = 56%

A=A w=120A
E = 36%

A=OA w=120A
E = 45%

A=60A w=51A
E = 242%

A=60A w=51A
E = 283%

Figure 5-4: Von Mises stress field for structures at maximum stress, panel (a), and at
failure, panel (b). Panel (a): The structure with A = 15 A, w = 120 A contains a significant
portion of the stress to form a straight line, and lower stress near the curved regions. For A
= 0 A, w = 120 Athe stress is relatively homogeneous, with highest stress on the surface.
For A = 60 A, w = 51 A high stress is concentrated along the extended, vertical ligaments.
Panel (b): High stress is observed near the failure process zone for the structure with A
= 15 A, w = 120 A. The structure forms voids near the corner and shearing occurs next.
For A = 0 A, w = 120 A, failure is mainly crack formation, while unfolding and beading is
observed for A = 0 A, w = 120 A.
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Next, we map the regions of best performance - ductility, toughness, and maxi-

mum stress - and its relationship with the amplitude and width, as seen in Figure

5-5. For structures with high amplitude and low width, greatest ductility is achieved;

whereas low amplitude and high width is yields the greatest strength. The structures

of highest toughness have a width and amplitude bounded by the regions of highest

ductility and stress. Interestingly, it is a balance of both geometric parameters (A and

w) and a combination of deformation mechanisms (unfolding, shearing, and cracking)

which allow for greatest toughness. Furthermore, this concept of geometric effects on

the stress-strain behavior are displayed in Figure 5-6.

60

(best ductility)

30

E15

cracking
(best str0

10 20 51 80 120
Width [A]

Figure 5-5: Performance map, showing the regions where optimum toughness, ductility,
and strength are located with respect to width and amplitude.

An analogy to protein structures can be drawn, wherein sacrificial bonds and
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Figure 5-6: Schematic of stress strain response for tensile deformation of different mor-

phologies of silica waves. Thin and wavy structures provide greatest ductility, while wide
and straight structure provide high stress at the cost of ductility. However, when combining
wavy and wide morphologies, significant toughness is gained.
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hidden lengths are responsible for enhanced toughness [27, 81, 16]. These sacrificial

bonds are weaker than the carbon backbone, but stronger than van der Waals or

hydrogen bonds, and allow for saw-tooth shape force-extension curves. Sulfate bonds

are a great example of sacrificial bonds in systems containing DOPA, a common amino

acid found in biological adhesives. As each sacrificial bond breaks, energy is released

in the form of heat and a regional unfolding, or uncoiling of a hidden length segment,

occurs. This process is repeated until all the sacrificial bonds are broken and the

structure is completely unfolded. Only then will the carbon backbone break, resulting

in the highest peak of stress. The interplay of multiple failure zones and deformation

mechanisms is strikingly similar to those found in the silica wave structures. A link

is made between the sacrificial bonds found in proteins, and the shearing mechanism

found in the silica wave. The catastrophic carbon backbone failure is also analogous to

cracking in a silica system. When integrating these multiple mechanisms, a universal

concept of enhancing toughness is achieved.

5.4 Conclusion

In summary, we have investigated the fundamental impact of wave structure ge-

ometries on the mechanical response of silica, by utilizing an atomistic simulation

approach based on the first principles reactive force field ReaxFF. Specifically, we are

able to demonstrate that the ductility of silica can reach to approximately 270%, by

increasing the amplitude to 60 A and maintaining the width at 51 A. This is achieved

by unfolding mechanisms and straightening of the structure, similar to the uncoiling

of hidden length from a convoluted protein. The structures with greatest toughness,

reaching values of up to 1.3 GJ/m 3 , have a 15 A amplitude and a 120 A width. And

finally, greatest strength is obtained from straight and widest, w = 120 A, structures.

Indeed, the study in this chapter is an important step towards revealing the broad

range of mechanical properties achieved through altering specific geometric shapes

(s.a. mesh to wavy), and will undoubtedly pave a conceptual figure of merit for future

nanoscale structural designs. Discovering that silica can indeed become extremely



ductile opens opportunities for industrial applications, such as flexible nanoscale pro-

cessors, and offers new incentives, in terms of mechanical response, for the incorpo-

ration and fabrication of wavy silica structures.
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Chapter 6

Conclusion

The ability to improve upon multiple mechanical properties, such as toughness,

strength, and ductility, is extremely important when designing future nanoscale ma-

terials. Altering the mechanical properties of one of the most brittle and abundant

minerals on earth, silica and silicon, allows a new window of opportunity for hu-

manity to create applications and reinvent materials once thought to be impossible.

The transferability of the concept allowing for massive transformation of mechanical

responses, such as brittle to ductile or weak to tough, through geometric alterations

at the nanoscale, is another profound discovery that will undoubtedly unleash a new

paradigm in the way materials are designed and applied. Indeed, the culmination

of materials design is to maintain environmental sustainability, infrastructure superi-

ority, multifunctional capacity, and economic feasibility. Nanoscale materials imple-

mented through design and fabrication concepts found in biology, such as in diatom

algae, bone, and sea sponges, hold the promise of providing these advantages.

6.1 Summary of findings

Revealing the intricate interplay between structure and mechanical response of di-

atoms requires delicate and systematic analysis. The previous chapters established a

framework on size effects, hierarchy, and shape, on the mechanical response of silicon

and silica structures. The main findings are summarized as follows:



" Silicon and silica meshes yield highly tunable mechanical properties through

alteration of their width, as shown in Figure 4-8 . A region of optimum tough-

ness is observed to lie between w=20 A and w=50 A. Crack arrest and shear

mechanisms allow for the high toughness, as shown in Figure 4-7.

" Hierarchical structures, such as meshes, have superior toughness and ductility

when compared to their constituent counterparts, foils, as shown in Figure 4-

2. The foils lack the multiple mechanisms of failure that are observed in the

meshes.

" Wavy silica structures are able to reach extremely high ductilities of up to

~ 270%, as shown in Figures 5-3 and 5-4, through unfolding mechanisms and

straightening of the structure, similar to the uncoiling of hidden length from a

convoluted protein.

6.2 Discussion and future research

Several challenges remain in the form of fabricating and more accurately modeling

these structures. For example, biomineralization from self assembling proteins which

guide silica precipitation has been studied [53, 52, 86, 85]. However, the ability to

synthesize complex and hierarchical structures still remains challenging. The recent

determination of certain diatom genetic sequences will further the understanding of

accurately controlling and fabricating silica structures. In terms of modeling these

systems, a key consideration is the effect of surface reconstruction on the mechanical

properties. However, surface reconstruction occurs on timescales that are intractable

for many atomistic methodologies, such as ReaxFF or quantum based approaches.

Future research could be geared toward atomistic simulations on the deformation

and failure of different morphologies found in diatom species. Moreover, mineralized

structures are found in many other biological systems, such as deep see sponges [2],

which could be studied using a similar molecular approach.

Another important step is reaching a greater convergence between actual diatom



frustules and those modeled. Key challenges are reaching greater size scales, incorpo-

rating organic material, amorphization, and surface termination. The size scale issue

can be generally overcome with coarse graining, or utilizing massive supercomputers

on the order of hundreds of cpu's with ReaxFF. With larger systems, more complex

shapes can be modeled, such as incorporating different shapes throughout the z axis.

Perhaps a more complicated challenge is the addition of organic material, such as pro-

teins, within the silica structure. The existing ReaxFF forcefield that models both

organics and silica is limited to glyoxal, and does not encompass nitrogen bonds, an

element found in many organic structures, such as collagen [51]. Once the adequate

forcefield is developed, proteins such as silaffins and collagen could be added to the

silica. As previous studies have mentioned, proteins within diatoms are found in their

adhesives and enable self assembling [22]. Amorphization of silica is another critical

concept that should be explored, since it could affect the mechanical properties and

is also found in diatoms. Another avenue for further research is surface termination,

as it occurs when silica is exposed to water, and does affect the mechanical response

of silica structures, as observed in the preliminary investigation in this thesis. Future

simulations of surface terminated structures will encompass larger systems in order

to more fully capture the effect at different length scales.
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