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Angle Modulation

Let i(t) be the instantaneous angle of a modulated sinusoidal carrier, i.e., 

where Ac is the constant amplitude. 

The instantaneous frequency is

Observation: The signal s(t) can be thought of as a rotating phasor of length Ac

and angle i(t).
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If s(t) were an unmodulated carrier signal, then the instantaneous angle would be

where c  Constant angular velocity in rad/s

c  Constant but arbitrary phase angle in radians

Let i(t) be varied linearly with the message signal m(t) and Фc = 0, then

where kp  Phase sensitivity of the modulator in rad/volt

In this case we say that the carrier has been phase modulated.

The phase modulated waveform is given by 

Let the instantaneous frequency i(t) be varied linearly with the message signal m(t), i.e.,
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where k  Frequency sensitivity of the modulator in rad/s/volt 

In this case we say that the carrier has been frequency modulated and the instantaneous 

angle is obtained by integrating the instantaneous frequency, i.e.,

The modulated waveform is therefore described by

Observation: Both phase and frequency modulation are related to each other and one can 

be obtained from the other. Hence, we could deduce the properties of one of the two 

modulation schemes once we know the properties of the other. 
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Relationship between Phase Modulation 
(PM) and Frequency Modulation (FM)

PM :

FM :

such that,



7

FM modulation
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PM modulation
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The figure below shows a comparison between AM, FM and PM modulation of the same 

message waveform: 



FM Generation
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Frequency Modulation

Consider the frequency modulation of the message (tone)

The instantaneous frequency (in Hz) of the FM signal is

Define the maximum frequency deviation as 

The instantaneous phase angle of the FM signal is 
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where                          is known as the FM modulation index (for a tone) or the maximum 

phase deviation (in rad) produced by the tone in question 

The FM modulated tone is therefore given by: 

The signal sFM(t) is nonperiodic unless fc = nfm, where n is a positive integer.

For the general case, 

where the complex envelope of the FM signal is described by

Observation: Unlike sFM(t), se(t) is periodic with period 1/fm.
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Since se(t) meets the Dirichlet conditions, we can compute its Fourier series, i.e.,

where the Fourier series coefficients are given by
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Let 

Then, 

and

where                                                  Is   the Bessel function of the first kind of order n.

Therefore,

and the FM tone waveform is described by
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In the frequency domain,

Average power of the FM waveform:

Across a 1 ohm resistor, the power of the FM waveform is

But, 

is also the power of the FM waveform.
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Let us now take a look at the properties of the Bessel function.

1.

2.

Hence, the average power of an FM tone is 

Suppose  is small, i.e., 0 <  ≤ 0.3, then

•

•

•

Under the assumption that  is small, the Fourier series representation of the FM waveform 

can be simplified to three terms.
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Thus, for  small, the FM tone may be described by

In the frequency domain,
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A plot of the magnitude spectrum of the FM tone with  small is shown below

The time domain FM waveform can be represented in phasor form as follows:

For arbitrary t = t0, and small , we can illustrate graphically the phasor representation and 

arrive at some conclusion.

 +−++= tfAtfAAS mcmccFM 2
2

1
2

2

1
0





20

The following figure shows an example of the phasor representation

Observation:

The resultant phasor          , has magnitude                    and is out of phase with respect to 

the carrier phasor 

Analytically,

FMS


,cFM AS 


.0cA

 )2sin()2cos()2sin()2cos(
2

1
 +−++−+++= tfjtftfjtfAAS mmmmccFM





21

But,

and

Consequently, the resultant phasor is given by

The magnitude of the resultant may be approximated by

since 
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Finally, the magnitude and phase of the resultant are found to be

Observation:

• For an FM tone, the spectral lines sufficiently away from the carrier may be ignored 

because their contribution (amplitude) is very small.

FM Transmission Bandwidth: 

For an FM tone, as  becomes large Jn() has significant lines only for 

All significant lines are contained in the frequency range 

where f is the peak frequency deviation.
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Let  be small, i.e., 0 <  ≤ 0.3, then

which means that only the first pair of spectral lines is significant, i.e., the significant lines 

are contained in the range  fc± fm

Observation: The previous analysis of an FM tone suggests that 

1. For large  the FM bandwidth is 

2. For  small the FM bandwidth is 

In general, the FM transmission bandwidth may be approximated by

This is known as the Carson’s rule.

Observation: Carson’s rule underestimates the transmission bandwidth by about 10%.
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Alternative definition of FM tone transmission bandwidth:

A band of frequencies that keeps all spectral lines whose magnitudes are greater than 1% of 

the unmodulated carrier amplitude Ac, i.e., 

where 
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General Case:

Let an arbitrary message signal m(t) have bandwidth Wm. 

Define the peak frequency deviation and the deviation ratio by

and 

Then Carson’s rule can be used to define the transmission bandwidth of an arbitrary FM 

signal, i.e., when m(t) is arbitrary.

Specifically, the FM transmission bandwidth can be defined by
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Example: In commercial FM in the US, f = 75 kHz, Wm = 15 kHz.

Therefore, the deviation ratio is D = 75 kHz/15 kHz = 5.

Using Carson’s rule, the transmission bandwidth is 

Using the Universal curve, the transmission bandwidth is

In practice, FM radio in the US uses a transmission bandwidth of BT = 200 kHz.

,180)/11(2 kHzDfBT =+=

.kHzf.BT 24023 ==



27

Generation of FM

The frequency of the carrier can be varied by the modulating signal m(t) directly or 

indirectly.

Direct generation of FM

If a very high degree of stability of the carrier frequency is not a concern, then we can 

generate FM directly using circuits without external crystal oscillators. Examples of this 

method are VCO’s, varactor diode modulators, reactance modulators, Crosby modulators 

(modulators that use automatic frequency control), etc.. 
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Indirect generation of FM

Commercial applications of FM (as established by the FCC and other spectrum governing 

bodies) require a high degree of stability of the carrier frequency. Such restrictions can be 

satisfied by using external crystal oscillators, a narrowband phase modulator, several 

stages of frequency multiplication and mixers.

Let us begin with the synthesis of narrow-band FM.

Narrowband frequency modulator 

The narrow band FM signal is given by 
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with kf (and thus fNB) small 

Let us now consider a technique to increase the FM signal bandwidth.

Let  sNB(t) be input to a nonlinear device with transfer characteristic y(t) = axn(t), where 

x(t) is its input, namely.

Nonlinear device. 

Let                                                   ,  then  at the output of the nonlinear device, we 

observe

Let us expand this last equation to infer the effect of this nonlinear device.
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cosni(t) can be expanded as follows:

Likewise,

Thus,

Expanding the last term of the previous equality, we get 
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Rewriting the equation before the last one, we get

The last term in the expansion of cosni(t) is given by 

)(cos)(6cos
32

1

)(cos)(2cos
32

1
)(cos)(4cos

16

1

)(cos)(2cos
4

1
)(cos

8

1
)(cos

2

1

)(cos)(4cos
8

1
)(cos

8

1

)(cos)(2cos
4

1
)(cos

2

1
)(cos

6

66

442

44

42

tt

tttt

tttt

ttt

tttt

i

n

i

i

n

ii

n

i

i

n

ii

n

i

n

i

n

ii

n

i

n

ii

n

i

n











−

−−

−−−

−−

−−

+

++

++=

++

+=

).(cos)(cos
2

1
1

ttk i

kn

ik
 −

−



32

Let n be an even number, then, when k = n, the last term is

If, on the other hand, n is an odd number, then when k = n-1, the last term is

Therefore, the last term in the expansion of cosni(t) is 

So,  can be expanded as 

)(cos
2

1
1

tn in


−

  )(cos
2

1
)()2cos(

2

1
)(cos)()1cos(

2

1
112

tntnttn ininiin


−−−
+−=−

)(cos
2

1
1

tn in


−

)(cos
2

)(2cos)(cos)(
1210 tn

A
atctccty in

n

c

ii 
−

++++= 



33

Example: Consider the cases when n = 2 and n = 3.

Let n = 2, then

or

Let n = 3, then
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Finally, 

Let y(t) be input to an ideal bandpass filter with unity gain, bandwidth wide enough to 

accommodate spectrum of wide band signal and  center frequency nfc, i.e., 

Ideal bandpass filter

Then,
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The instantaneous frequency of sWB(t) is 

Observations about sWB(t) :

1. The carrier frequency is nfc

2. The peak frequency deviation is nfNB

These are the desired properties of the WB FM signal.

The overall frequency multiplier device is shown below:

Complete frequency multiplier
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Example: Noncommercial FM broadcast in the US uses the 88-90 MHz band and 

commercial FM broadcast uses the 90-108 MHz band (divided into 200 kHz channels). In 

either case f = 75 kHz. Suppose we target a station with fc = 90.1 MHz. Then the 

indirect FM generation method suggested by Armstrong enables us to achieve our goals. 
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Armstrong indirect method of FM generation




