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Angle Modulation

Let 6(t) be the instantaneous angle of a modulated sinusoidal carrier, i.e.,
m'(t)

where A, Is the constant amplitude.

The instantaneous frequency is

s(t) = A, cosd. (1),

Observation: The signal s(t) can be thought of as a rotating phasor of length A,

and angle &(t).



If s(t) were an unmodulated carrier signal, then the instantaneous angle would be
0, (t) = ot + ¢,
where @, =Constant angular velocity in rad/s
¢, =Constant but arbitrary phase angle in radians
Let 6,(t) be varied linearly with the message signal m(t) and @, = 0, then
0, (t) = ot +k, m(t),
where k= Phase sensitivity of the modulator in rad/volt
In this case we say that the carrier has been phase modulated.
The phase modulated waveform is given by
Spm (1) = A, cos(a t +k m(t))
Let the instantaneous frequency wi(t) be varied linearly with the message signal m(t), i.e.,

o, (t) = o, +k, m(t)



where k= Frequency sensitivity of the modulator in rad/s/volt

In this case we say that the carrier has been frequency modulated and the instantaneous
angle is obtained by integrating the instantaneous frequency, i.e.,

t t t
0. (t) = j . (r)d7 = j [, +k m()dr =t +k, j m(zr)dz
0 0 0
The modulated waveform is therefore described by

Sey (1) = A, cos(a)ct +K _t[ m(z)d r]

Observation: Both phase and frequency modulation are related to each other and one can
be obtained from the other. Hence, we could deduce the properties of one of the two
modulation schemes once we know the properties of the other.




Relationship between Phase Modulation
(PM) and Frequency Modulation (FM)

Modulating

m;ﬂ (1)

signal mi(t) Integrator
c—
Modulating : :
signal mit) Differentiator

[ —

R

(a)

m:{t}

Phase v(t) = A frequency-
modulator - modulated signal
Frequency v(t) = A phase-
modulator modulated signal

(b)

v(t) = A cos [mf [ !{!”?:{fﬂ

.f
v(t) = A cos [mﬂr +kJ. m(t) fz’r:|

o =

d
dt

.f
_[mlj + kJ. m(t) -:z’r} = . + km(t)




()

Phase

173

(L)

modulator

w5 e (£)

|

A cos(w i)

frequency

o
modulator

p= 5 g (£)

|

A cos(m. )

FM modulation



()

Phase

4
ie) " modulator
A cos(w i)
d . frequency
dt modulator

|

A cosi{e )

PM modulation

=5 00 (L)



The figure below shows a comparison between AM, FM and PM modulation of the same
message waveform:
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Frequency Modulation
Consider the frequency modulation of the message (tone)
m(t) = A, cos(2z f t),
The instantaneous frequency (in Hz) of the FM signal is
f.(t)=f, +k; A, cos2rf_t).
Define the maximum frequency deviation as

Af =k A .
The instantaneous phase angle of the FM signal is

6. (1) = 27r_t“ f(r)dr

= 27f t+k, ;ﬁsin(zn ft)

=27f t+ psin(2x f_t)



where g =k A /[ f Is known as the FM modulation index (for a tone) or the maximum
phase deviation (in rad) produced by the tone in question

The FM modulated tone is therefore given by:
Sey (1) = A, cos(27z T .t + gsin(2x f_t))
= A [cos(2x f_t)cos(B27 f, t) —sin(27x f t)sin(S2x f_t)]
The signal sg,,(t) is nonperiodic unless f, = nf_, where n is a positive integer.
For the general case,
5., (1) = Re{Acej[z”fc”ﬂS‘“(z” fmt>]}
= Rels, (t)e 2"}
where the complex envelope of the FM signal is described by

S (t) _ Acej,b’sin(Zﬂfmt)
€

Observation: Unlike sgy,(t), s.(t) Is periodic with period 1/f ..




Since s,(t) meets the Dirichlet conditions, we can compute its Fourier series, i.e.,

Se (t) _ chejZEnfmt’

N=-—o0

where the Fourier series coefficients are given by

l T/2 .
C,=— js (t)e 7"'gt, T =1/f
n T e m
-T/2
1/2f,

= f, [s.(t)e "t
—1/2f,
1/2f,
_ fm J'Acejﬁsin(Zﬂfmt)e—j27rnfmtdt
—1/2f,
1/2f,
_ Acfm J'ej[ﬂsin(anmt)—Zﬂnfmt]dt.

1/ 21,



Let x=2xft.

Then, dt = 1 dx
2t

and ¢ = A [ellrsm-nlgy
27T

=AJ.(8),

where J.(5)= 1 jej[ﬁSi”X‘”X]dx Is the Bessel function of the first kind of order n.
72. —7T
Therefore,

s.() = A Y3, (B)e =™

N=—o0

and the FM tone waveform is described by

S () = AL D3, (B) cosl2(F, +nf, )t

N=—o0



In the frequency domain,
Sem (1) = F{SFM (t)}

- |:{Ac ijn(ﬂ) cos|27(f, + nfm)t]}

= A3, (B)F[cosf2r(f, +nf, )]

“AY Jnéﬂ) [5(f +f +nf )+5(f = —nf )]

Average power of the FM waveform:

Across a 1 ohm resistor, the power of the FM waveform is P=A?/2

But, s
LS 0

Is also the power of the FM waveform.
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Let us now take a look at the properties of the Bessel function.
L 3.8 =(D"I_,(p)
2 23.(p=1

N=—o0

Hence, the average power of an FM tone is Af /2.

Suppose gis small, i.e., 0 < £<0.3, then

« Jy(B) =1
- J(B)=p12
. J,(B)=0, n>2

Under the assumption that {3 is small, the Fourier series representation of the FM waveform
can be simplified to three terms.



Thus, for 3 small, the FM tone may be described by

Sey (1) = Ac{cos( 27 fCt)+§cos( 2r(f.+ T )t)—gcos( 2r(f.—f )X )}

= A cos(2r fct)+AC§cos(27z( f.+f )t)—Acgcos(Zyz( f.—f )
In the frequency domain,
Sew () = %[5(1‘ +f,)+8(f - fc)]—ACT’B[J(f +fo—f,)+o(f —f +f,)]

+¥[5(f +f o+ )+o(f—f, —f)]



A plot of the magnitude spectrum of the FM tone with 3 small is shown below
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The time domain FM waveform can be represented in phasor form as follows:

=A.Z£0" +— AC,BZZﬂf t+— AC,BA 2rf t+7

For arbitrary t = t,, and small 3, we can illustrate graphically the phasor representation and
arrive at some conclusion.



The following figure shows an example of the phasor representation
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Observation:

The resultant phasor § -, 1as magnitude ‘§ .y ‘ =~ A.and is out of phase with respect to
the carrier phasor A, £0".

Analytically,

§FM =A. + % AC,B[cos(Zyz f )+ jsin(2rz f_t)+cos(—2z f t+ )+ jsin(—2zf_t+ n)]



But, cos(—2z f t+ ) =cos(2x f_t)cosz +sin zsin(2x f_t)
0

=—cos(2x f 1)

and  sin(-2z f t+x)=-sin(2x f_t)cosxz +sin zcos(2x f_t)
0

=sin(2x f 1)

Consequently, the resultant phasor is given by

Sew = A, + JA Bsin(27 T 1)

The magnitude of the resultant may be approximated by

‘§FM‘:\/ACZ +A3,328in2(27z'fmt)

~ A {1+ %,82 sin’(2x fmt)}

since (L+X)" =1+nx,  |nx <1



Finally, the magnitude and phase of the resultant are found to be

\S}M (t)\ — A{u ﬁ4 C ﬁ4 2 cos(4r fmt)}

£Spy = ¢ (t) =tan*[Bsin(27 f,1)]

Observation:

 For an FM tone, the spectral lines sufficiently away from the carrier may be ignored
because their contribution (amplitude) is very small.

FM Transmission Bandwidth:

For an FM tone, as 3 becomes large J,() has significant lines only for
\n\gﬁzkam/fm =Af/f_.

. All significant lines are contained in the frequency range
f,xpf. =1 tAf,

where Af is the peak frequency deviation.



Let B be small, i.e., 0 <3 <0.3, then

3o(B)>> 3,(B),n=0

which means that only the first pair of spectral lines is significant, i.e., the significant lines
are contained in the range f, £ f_

Observation: The previous analysis of an FM tone suggests that

1. For large B the FM bandwidthis  Bp, = 2Af

2. For small the FM bandwidthis B, =2f_..

In general, the FM transmission bandwidth may be approximated by
B, = 2Af +2f
=2Af (1+ f_/Af)
=2Af (1+1/ )

This 1s known as the Carson’s rule.

Observation: Carson’s rule underestimates the transmission bandwidth by about 10%.




Alternative definition of FM tone transmission bandwidth:

A band of frequencies that keeps all spectral lines whose magnitudes are greater than 1% of
the unmodulated carrier amplitude A, i.e.,

B, =2n_ f

max "m?

where n__ = max{n:\Jn (B) > 0.01}.

40 —




General Case:
Let an arbitrary message signal m(t) have bandwidth W._...
Define the peak frequency deviation and the deviation ratio by

Af =k, max{m(t)]}
and D =Af /W_.

Then Carson’s rule can be used to define the transmission bandwidth of an arbitrary FM
signal, i.e., when m(t) is arbitrary.

Specifically, the FM transmission bandwidth can be defined by
B, = 2Af +2W_
=2Af (1+W_ /Af)
=2Af (1+1/D)



Example: In commercial FM in the US, Af =75 kHz, W, = 15 kHz.
Therefore, the deviation ratio is D = 75 kHz/15 kHz = 5.

Using Carson’s rule, the transmission bandwidth 1s

B, = 2Af (1+1/D) =180kHz,

Using the Universal curve, the transmission bandwidth is

B. =3.2Af = 240kHz.

In practice, FM radio in the US uses a transmission bandwidth of B; = 200 kHz.



Generation of FM

The frequency of the carrier can be varied by the modulating signal m(t) directly or

Indirectly.

Direct generation of FM
If a very high degree of stability of the carrier frequency is not a concern, then we can
generate FM directly using circuits without external crystal oscillators. Examples of this

method are VCO’s, varactor diode modulators, reactance modulators, Crosby modulators

(modulators that use automatic frequency control), etc..
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Indirect generation of FM
Commercial applications of FM (as established by the FCC and other spectrum governing

bodies) require a high degree of stability of the carrier frequency. Such restrictions can be
satisfied by using external crystal oscillators, a narrowband phase modulator, several

stages of frequency multiplication and mixers.

Let us begin with the synthesis of narrow-band FM.

| : > narrowband phase
i L e Sarnlf
( ) modulator NB( )

A cosa !

crystal oscillator
Narrowband frequency modulator
The narrow band FM signal is given by

Sye (1) = A, COS{Z;Z f.t+27Kk; jm(r)d z}



with k; (and thus Afyg) small
Let us now consider a technique to increase the FM signal bandwidth.

Let s\g(t) be input to a nonlinear device with transfer characteristic y(t) = ax"(t), where
X(t) Is its input, namely.

Syal(t) . a(-)" = V(1)

Nonlinear device.

t
Let 6.(t)=2xft+27k, j m(z)drthen at the output of the nonlinear device, we
observe 0

y(t) = aA! cos” 6, (t)

Let us expand this last equation to infer the effect of this nonlinear device.



cos"é(t) can be expanded as follows:
cos" @, (t) = cos® @ (t)cos"* @, (t)
= %[1+ c0s26, (t)|cos"? 6, (t)
= %cosnz 0. (t) + %cos 26 (t)cos" 2 @ (t)

Likewise, ) .
cos" 6 (t) = 5 cos" ™ 6. (t) + 5008 26, (t)cos"* @ (t)

Thus,

cos" @, (t) = %cos”2 0. (t) + %cos 20, (t)cos" ™ @, (t) + %cos2 20, (t)cos" ™ 4. (t)

Expanding the last term of the previous equality, we get

cos? 26, (t) cos"™ 0. (t) = %[1+ cos4d, (t)]cos"™* @, (t).



Rewriting the equation before the last one, we get
n 1 n-2 1 n—4
cos” é.(t) = > cos™ - 4. (t) + " cos26. (t)cos™ " 6. (1)
1 n—-4 1 n—-4
-+ 3 cos" " 4. () + 3 cos4é. (t)ycos™ " 6. (1)
1 n-2 1 n—4 1 n—4
=5 cos" “ & (t) + P cos' " 6. (t) + " cos 26, (t)cos™ ™ 4. (1)
1 n-6 1 n—6
+-—Cc0s446.(t)cos" ™ 4. (t) + —cos 26. (t)cos " 6. (t)
16 32
1
+-—Cc0s66, (t)cos"° @, (t
% (1) (1)
The last term in the expansion of cos"6,(t) is given by

L cos k@, (t)cos" ™ @, (t).

2k—l




Let n be an even number, then, when k = n, the last term iIs

cosné. (t)

2n—1

If, on the other hand, n is an odd number, then when k = n-1, the last term is

1
= [cos(n—1)6, (t) cos b, (t)] = = cos(n —2)6. (t) + = cosné. (t)
Therefore, the last term in the expansion of cos"0,(t) is
1
= cosné. (t)

So, can be expanded as

y(t) =c, +c,cosd. (t)+c,cos28.(t) +...+a A cosné. (t)

2n—l



Example: Consider the cases whenn=2 and n = 3.

Let n = 2, then
y(t) = aA? cos’ 6, (t)

1+ cos 26 (t)} _ aA; n aA; c0s 26 (t)
2 22 |

or y(t) = aA; {

Let n = 3, then

y(t) = aA’ % cos 20, (t) + % cos 20, (t) cos & (t)}

J1 1(1 1
= aA’ 008 0, (t) + E{E cos 34, (t) + 5 €08 0, (t)H

3 3
= Saf(: coséd. (t) + aj:c cos 36, (t)



Finally,
t t
y(t) = ¢, +c, Cos[Zyz fot+ 27k, | m(r)drj t+c, cos[4n fot+drk, | m(r)dr]
0 0

2n—l

n t
+...+a A cos[Znn f.t+27znk; jm(r)drj
0

Let y(t) be input to an ideal bandpass filter with unity gain, bandwidth wide enough to
accommodate spectrum of wide band signal and center frequency nf, i.e.,

ideal BP filter
1'/’1 - l—lBP(/) - S”r'[;(/)

Ideal bandpass filter

Then,

Zn—l

aACn t
Sy (1) = 003[27zn f.t+27nk; J'm(r)d rj
0



The instantaneous frequency of s, g(t) IS

f. (t) = nf_ + nk, m(t)

Observations about s,,5(t) :

1. The carrier frequency is nf,

2. The peak frequency deviation is nAfyg

These are the desired properties of the WB FM signal.

The overall frequency multiplier device is shown below:

A cos& ()
Jim-

/ cender

nf.

a(-)"

BPF

Complete frequency multiplier



Example: Noncommercial FM broadcast in the US uses the 88-90 MHz band and
commercial FM broadcast uses the 90-108 MHz band (divided into 200 kHz channels). In
either case Af = 75 kHz. Suppose we target a station with f, = 90.1 MHz. Then the
indirect FM generation method suggested by Armstrong enables us to achieve our goals.

hfan) J. =400kHz  [x81 frequency| f, = 32.4MHz

- i -
"y Af = 1447Hz |_multiplier [a7 1117447

m(E)

90° phase
shift

J00kHz
crystal osc.




5, (£)

BPF

i & =1.41M;‘ﬁh

f.=1.4IMHz Af =1172Hz

33N IJ‘IH:
Crystal osc.

54 (¢)

x64 frequency S =90 IMHE. 5, ()

multipher Af = 75kHz

1 >—

RF power
amplifier

=

Sz (L)
£, = 90. 1MHz
Af = T5ktz

Armstrong indirect method of FM generation
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