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Demodulation of FM signals

Consider the following receiver architecture

Frequency discriminator implementation of an FM demodulator

The slope circuit is characterized by a purely imaginary transfer function 

Let H1(f ) be described by
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where a > 0 is a constant that determines the slope of H1(s ).

Define G1(f )  H1(f )/j, then g1(t ) is the impulse response of a real bandpass system 

described by G1(f ).

In the time domain,

where g1,I(t) and g1,Q(t) are the in-phase and quadrature components of g1(t).

Therefore, the complex envelope of g1(t) is described by

which implies that

Using this information, we get
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But,

or

which implies that              has a lowpass frequency response limited to 

and that

Observations:             can be obtained by taking the part of G1(f) that corresponds to 

positive frequencies, shifting it to the origin and then scaling it by a factor of 2. 

In the next figure              is replaced by                  and                replaced by 
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Frequency responses of H1(f ),              and H2(f )
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From the previous derivation,

But,

If s1(t) is the output of the slope filter H1(f ) when the input is sFM(t) then the complex 

envelope of the output is
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In the frequency domain,

But,

which implies that
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Therefore,

Observation: s1(t ) contains both AM and FM. 

However, if
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Then a distortionless envelope detector can extract m(t) plus a bias, i.e.,

Finally, if 

then

Moreover,

The cascade of a slope circuit and an envelope detector is known as a frequency 

discriminator.
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Frequency discriminator

FM demodulation via phase-locked loops

We consider the Phase-locked loop (PLL) FM detector shown below

Phase-locked loop FM detector
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From the previous block diagram,

Let the phase detector be described by

then,
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with the proper choice of lowpass filter, the output of the phase detector is

A VCO is an FM modulator with peak frequency deviation

where                                implies that 

An equivalent nonlinear model is now shown

Nonlinear model of PLL FM demodulator
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Let the PLL operate in the lock condition, i.e.,                     , or that 

is small. Then,

and the linear approximation of the PLL is given by

Linear model of the phase-locked loop 

Let the loop filter have the transfer function HLF(s) = 1, then
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Thus, the output of the vco is given by

Let k0 = ktkvco, then

or

In the s-domain, assuming zero initial conditions,

The closed-loop transfer function is therefore given by 
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The corresponding impulse response is

Let us now find out what happens when the loop gain k0 is increased, i.e.,

Clearly,

or                      , for large k0.

Example: Let the message be a step function, i.e., m(t) = Au(t),  then

In this case,

In the s-domain,                       and 
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The Laplace transform of          is then given by

Let k1 = kω/kvco, then in the time domain,

Clearly, as t → , the estimate 

Observation: This result is valid when the initial phase error is small. 

Remark: A large loop gain k0 results in practical difficulties, hence, a different loop filter has 

to be used. 

Consider the loop filter described by

Then the output of the vco is given by
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Let                       be small, then the closed-loop transfer function is

Define                                   then

where

Consider again the step function message m(t) = Au(t). Then
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In the complex frequency domain,

Let   kA, then  (s) = /s2

and

If 0 <  < 1, then

and 

Hence the steady-state phase error is zero.

A typical value of  is 0.707.
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