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5.8. Cavity model for therectangular patch

The transmission line model is very limited in its description of the rea processes taking place when a
patch is excited and the performance of the patch is also affected by higher-order modes.

The cavity model is a more genera model of the patch which imposes open-end conditions at the side
edges of the patch. It represents the patch as a dielectric - loaded cavity with:

- Electrical walls (above and below), and
- Magnetic Walls (around the perimeter of the patch).

At the magnetic wall
nxH =0 (The H- field is purely normal)
n-E=0 (The E- field is purely tangential)
It is analogous to the open end termination in the theory of transmission lines.

If we treat the microstrip antenna only as a cavity, we cannot represent radiation because an ideal loss-
free cavity does not radiate and its input impedance is purely reactive. To account for the radiation, aloss

mechanism isintroduced. Thisis done by introducing an effective loss tangent, Jeg -

The wave generated and propagating beneath the patch undergo considerable reflection at the edges of the
patch. Only a very small fraction of them is being radiated. Thus, the antenna is quite inefficient. The
cavity model assumes that the E field is purely tangential to the slots formed between the ground plane

and the patch edges (magnetic walls). Moreover, it considers only TM* modes, i.e., modes with no H,
component. These assumptions are, basically, very much true.
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Fig.5.15 Rectangular microstrip patch geometry



The TM* modes are fully described by a single scalar function A - the x- component of the magnetic
vector potential:

A=AX (5.17)
In a homogeneous source-free medium, Ax sati sfies the wave equation:

VZA( + kZA( =0 (5.18)

For regular shapes (like the rectangular cavity), it is advantageous to use the separation of variables:
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The eigen value equation is
kg +k§ + k2 =k* (5.23)
The solutions of (5.22) are harmonic functions:
X (X) = Z AY; cos( Ky x) + AT sin(KynX),
n
Y(y) = Z BS cos(kyny) + B,?sin(kyny),

(5.24)
Z(2)= ) _Cfcos(kzpz)+ Crsin(kp2).

When the functions in (5.24) are substituted in (5.20), that give the general solution of (5.18). The
particular solution of (5.18) depends on the boundary conditions.



In our case, there are electric walls at x = 0 and x = h. There, the tangential E-field components must

vanish, i.e., E,=E,=0|,on
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Weset A at the top and bottom walls as
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For al the side walls, we set a vanishing normal derivative for Ay
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This ensures vanishing Hyand Hy atz=0andz=L , aswell asvanishing Hy and H,aty=0andy =
W (magnetic walls).
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It is now obvious that the solution must appear in terms of the functions

X(x) = Y Arcos(keX), ki =n
n

- Scos(kyny), Ky =n—,
Y(y) Zn:BnCOS( yny) yn (5.29)

P

h

p

W

2(2)= Y Chcos(kn2), Kz = n'°r
n

The spectrum of the eigen modes in the cavity is discrete. The frequencies of those modes (the resonant
frequencies) can be calculated from (5.23) as
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The mode with the lowest resonant frequency is the dominant mode. Since usualy L < W, the lowest-

frequency modeisthe TM g1 , for which
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The field distribution of some low-order modesis given in the following figure.
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Fig. 5.16 Field configurations (modes) for rectangular microstrip patch

The general solution for A™) [see (5.20) and (5.24)] is

AMP) {A{;‘ cos( m% xﬂ { BS cos[ n% yﬂ [CQ COS( ppr ZH (5.33)



or
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The respective field solution for the (m, n, p) modeis

(K -i3)
E,=—] E— Arnp - €0S(KyX) - cos( kyy) -cos(k,2)
k. K
Ey=—] V\;(rr:e/ Armp -sin(kxx)-sin(kyy)-cos(kzz)
kK . .
E,=—] V\;(mj Arnp -sm(kxx)-cos(kyy)-sm(kzz)
H,=0

K .
Hy = _EZ Amp cos(kyx)- cos(kyy) -sin(k,2)

(5.39)

k
H,= Ey Arnp - €05(KyX) - Si n(kyy) -cos(k,2)

For the dominant ' oo1 mode,
E, = [—j (k2 —p?/ hz)/(wrre)} Agorcos(pz/ L)
E,=E, =0

Hy=—(p /mL)Ayysin(pz/L)
Hy=H,=0.

(5.34)

(5.35)

(5.36)

(5.37)

(5.38)

(5.40)



