Lecture-5

6.3.4 Directivity of a linear array

(i) Directivity of a broadside array

The array factor of a broadside array can be written as

$$AF_n = \frac{1}{N} \left[\frac{\sin\left(\frac{N}{2}kd\cos\theta\right)}{\sin\left(\frac{1}{2}kd\cos\theta\right)} \right] \tag{6.28}$$

For small spacing between the elements ($d << \lambda$) the normalized array factor can be approximated as:

$$AF_n \Box \left[\frac{\sin\left(\frac{N}{2}kd\cos\theta\right)}{\frac{N}{2}kd\cos\theta} \right] \tag{6.29}$$

Then the radiation intensity can be expressed as:

$$U(\theta) = \left| AF_n \right|^2 = \left[\frac{\sin\left(\frac{N}{2}kd\cos\theta\right)}{\frac{N}{2}kd\cos\theta} \right]^2 = \left(\frac{\sin Z}{Z}\right)^2$$
 (6.30)

$$D_0 = 4\pi \frac{U_{\text{max}}}{P_{rad}} = \frac{U_{\text{max}}}{U_{av}}$$

$$(6.31)$$

where $U_{av} = P_{rad} / (4\pi)$.

The radiation intensity in the direction of maximum radiation, $\theta = \pi/2$ in terms of AF_n is unity:

$$U_{\text{max}} = U(\theta = \pi / 2) = 1$$

$$\Rightarrow D_0 = U_{av}^{-1} \tag{6.32}$$

Radiation intensity averaged over all directions is calculated as

$$U_{av} = \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} \frac{\sin^{2} Z}{Z^{2}} \sin\theta d\theta d\phi = \frac{1}{2} \int_{0}^{\pi} \left| \frac{\sin\left(\frac{N}{2}kd\cos\theta\right)}{\frac{N}{2}kd\cos\theta} \right|^{2} \sin\theta d\theta$$

Changing the variables:

$$Z = \frac{N}{2}kd\cos\theta \Rightarrow dZ = -\frac{N}{2}kd\sin\theta d\theta \tag{6.33}$$

Then,

$$U_{av} = \frac{1}{2N} \frac{2}{kd} \int_{\frac{Nkd}{2}}^{\frac{Nkd}{2}} \left(\frac{\sin Z}{Z}\right)^2 dZ$$

$$U_{av} = \frac{1}{Nkd} \int_{\frac{Nkd}{2}}^{\frac{Nkd}{2}} \left(\frac{\sin Z}{Z}\right)^2 dZ$$
 (6.34)

The function $(Z^{-1}\sin Z)^2$ is a relatively fast decaying function as Z increases. For large array Nkd/2 is too large and, (6.34) can be approximated by extending the limit to infinity.

$$U_{av} \approx \frac{1}{Nkd} \int_{-\infty}^{\infty} \left(\frac{\sin Z}{Z}\right)^2 dZ$$

Since
$$\int_{-\infty}^{\infty} \left[\frac{\sin(z)}{z} \right]^2 dz = \pi$$

$$U_{av} \square \frac{\pi}{Nkd}$$
 (6.35)

$$D_0 = \frac{1}{U_{av}} \approx \frac{Nkd}{\pi} \,\Box \, 2N \left(\frac{d}{\lambda}\right) \tag{6.36}$$

Substituting the length of the array L = (N-1)d in (6.36)

$$D_0 = 2 \underbrace{\left(1 + \frac{L}{d}\right)}_{N} \left(\frac{d}{\lambda}\right) \tag{6.37}$$

For large arrays $(L \gg d)$ the diretivity can be reduced to

$$D_0 \approx 2L/\lambda \tag{6.38}$$

(ii) Directivity of an ordinary endfire array

Consider an endfire array with maximum radiation at $\theta = 0^{\circ}$, i.e. $\beta = -kd$.

The radiation intensity of the endfire array can be expressed as

$$U(\theta) = \left| AF_n \right|^2 = \left\{ \frac{\sin\left[\frac{N}{2}kd(\cos\theta - 1)\right]}{\left[\frac{N}{2}kd(\cos\theta - 1)\right]} \right\}^2 = \left(\frac{\sin Z}{Z}\right)^2$$
(639)

where
$$Z = \frac{N}{2}kd(\cos\theta - 1)$$
.

The maximum value of the radiation intensity is unity and it occurrs at $\theta = 0^0$. The average value of the radiation intensity is given by:

$$U_{av} = \frac{P_{rad}}{4\pi} = \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} \left(\frac{\sin Z}{Z}\right)^{2} \sin\theta d\theta d\phi = \frac{1}{2} \int_{0}^{\pi} \left(\frac{\sin Z}{Z}\right)^{2} \sin\theta d\theta.$$
 (6.40)

As
$$Z = \frac{N}{2}kd(\cos\theta - 1)$$
 so $dZ = -\frac{N}{2}kd\sin\theta d\theta$

Then the average radiation intensity can be expressed as:

$$U_{av} = -\frac{1}{2} \frac{2}{Nkd} \int_{0}^{-Nkd/2} \left(\frac{\sin Z}{Z}\right)^{2} dZ = \frac{1}{Nkd} \int_{0}^{Nkd/2} \left(\frac{\sin Z}{Z}\right)^{2} dZ$$
 (6.41)

For a large array Nkd is sufficiently large, then

$$U_{av} \approx \frac{1}{Nkd} \int_{0}^{\infty} \left(\frac{\sin Z}{Z}\right)^{2} dZ = \frac{\pi}{2Nkd}$$
 (6.42)

The directivity then have the value as:

$$D_0 \approx \frac{1}{U_{av}} = \frac{2Nkd}{\pi} = 4N\left(\frac{d}{\lambda}\right) \tag{6.43}$$

In terms of the array length L = (N-1)d, the directivity can be expressed as:

$$D_0 = 4\left(1 + \frac{L}{d}\right)\left(\frac{d}{\lambda}\right) \tag{6.44}$$

For a large array $(L \gg \lambda)$, the directivity reduces to:

$$D_0 \square 4L/\lambda \tag{6.45}$$

It is observed that the directivity of an endfire array is approximately twice as large as the directivity of the broadside array.

6.3.5 Pattern characteristics of linear uniform arrays

A. Broadside array

NULLS

$$(AF_n = 0)$$

$$\theta_n = \cos^{-1} \left(\pm \frac{n}{N} \frac{\lambda}{d} \right)$$

where n = 1,2,3,4, ... and $n \neq N,2N,3N,...$

MAXIMA

$$(AF_n = 1)$$

$$\theta_n = \cos^{-1} \left(\pm \frac{m\lambda}{d} \right)$$

where m = 0,1,2,3,...

HALF-POWER POINTS:

$$\theta_h \square \cos^{-1} \left(\pm \frac{1.391\lambda}{\pi Nd} \right)$$

where
$$\frac{\pi d}{\lambda} \Box 1$$

HALF-POWER BEAMWIDTH:

$$\Delta \theta_h = 2 \left[\frac{\pi}{2} - \cos^{-1} \left(\frac{1.391 \lambda}{\pi N d} \right) \right], \quad \frac{\pi d}{\lambda} \Box 1$$

FIRST-NULL BEAMWIDTH

$$\Delta \theta_n = 2 \left\lceil \frac{\pi}{2} - \cos^{-1} \left(\frac{\lambda}{Nd} \right) \right\rceil$$

B. Endfire array

NULLS

$$(AF_n = 0)$$

$$\theta_n = \cos^{-1} \left(1 - \frac{n}{N} \frac{\lambda}{D} \right)$$

where n = 1,2,3,... and $n \neq N,2N,3N,...$

MAXIMA

$$(AF_n=1)$$

$$\theta_n = \cos^{-1}\left(1 - \frac{m\lambda}{d}\right),\,$$

where m = 0,1,2,3,...

HALF-POWER POINTS:

$$\theta_h = \cos^{-1} \left(1 - \frac{1.391\lambda}{\pi Nd} \right)$$

where
$$\frac{\pi d}{\lambda} \Box 1$$

HALF-POWER BEAMWIDTH:

$$\Delta \theta_h = 2\cos^{-1} \left(1 - \frac{1.391\lambda}{\pi Nd} \right)$$

where
$$\frac{\pi d}{\lambda} \Box 1$$

FIRST-NULL BEAMWIDTH:

$$\Delta \theta_n = 2\cos^{-1} \left(1 - \frac{\lambda}{Nd} \right)$$