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6.3.6 N-Element Linear Array: Uniform Spacing, Nonuniform Amplitude

Uniform amplitude arrays produce small half-power beamwidth and possess the largest directivity. But in
certain instances the sidelobe level of the radiation pattern has to be maintained at a desired level. The
sidelobe level can be reduced by varying the amplitude excitations of the array elements. Nonuniform
amplitude excitations of alinear antenna array produce a pattern with smaller sidelobe level and a dlightly
increased half power beamwidth in comparison to the uniform linear antenna array.

In this section, we will discuss arrays with uniform spacing but nonuniform amplitude distribution. Often,
the broadside arrays are classified according to the type of their excitation amplitude. The categories are:

(a) Uniform amplitude array: Relatively high directivity, but the side-lobe levels are high;

(b) Dolph-Chebyscheff array: For agiven number of elements, its maximum directivity is next to that of
the uniform array. Side-lobe levels are the lowest in comparison with the other two types of arrays for
agiven directivity;

(c) Binomia array: Does not have good directivity but has very low side-lobe levels (when the element
spacing is equal or less than M2, there are no side lobes at all).

Array Factor Analysisfor Non-uniform Array

A simplification to the array factor can be made by symmetrically placing the array elements. Consider an
array with an even number of isotropic elements (2M, where M is an integer) and suppose these are
located symmetrically about the origin of the coordinate system (defined as the z-axis in this case, which
isalso the physical center of the array). The separation between the elementsis d.
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Fig.6.16 Nonuniform amplitude array of even number of elements.

Assuming that the amplitude excitation is symmetrical about the origin, the array factor for a nonuniform
amplitude, broadside array can be written as:
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In the normalized form, it reduces to

(AF),,, = i a, cosg (=1 4 cosq] (6.46)

2
where a,' s are the excitation coefficients of the array element.

Similarly, for odd number of elements (2M+1), the array factor can be written as
M+1

(AF) .0 = Y @&, cos[(n—1)kd cosq] (6.47)

n=1
The amplitude excitation of the center element is 2ay, in this case.

6.3.7 Binomial Array:
The binomial array was investigated and proposed by J. S. Stone to synthesize patterns without side lobes.
Let usfirst consider a 2—element array with equal current amplitudes and spacing, the array factor is given

by
AF =1+eV (6.48)

For abroadside array (b = 0) with element spacing d less than one-half wavelength, the array factor has
no sidelobes. This can be proved in the following way:

|AF|* =1+ cosy )? +sin?y =2(L+ cosy )=4cosz(yéj

where Y = kd cos0. Thefirst null of thisarray factor can be obtained as:
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Aslong asthed < N2, the first null does not exist. If d = M2, then null will be at g = 0° and 180°. Thus, in
the “visible” range of g, al secondary lobes are eliminated.

An array formed by taking the product of two arrays of this type gives:
AF=(1+eV Ji+eV )=1+2eV +e¥ (6.49)

This array factor, being the square of an array factor with no sidelobes, will also has no sidelobes.
Mathematically, the array factor above represents a 3-element equally-spaced array driven by current
amplitudes with ratios of 1:2:1. In a similar fashion, equivalent arrays with more elements may be
formed.

2-dlement AF =1+eV

3-dlement AF = (1+ el )2 =1+2eV +el¥



4-element AF = (1+ el )3 =1+3¥ +3/¥ 1el¥
Similarly for N-element the array factor can be expressed as
N-element AF =(1+el '™ (6.50)

If d< M2, the above AF does not have side lobes regardless of the number of elements N. The excitation
amplitude distribution can be obtained easily by the expansion of the binome in (6.50). Making use of
Pascal’s triangle, this can be given by:
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The relative excitation amplitudes at each element of an (N+1) element array can be determined from this
traiangle. An array with abinomial distribution of the excitation amplitudesis called abinomial array.

AF = (1+ el )N’1 =1+(N -2V + (N "l)g\' =2, (N _1)('\'3_12)('\' —3eiy .. (6.51)

The excitation distribution as given by the binomial expansion gives the relative values of the amplitudes.
It is immediately seen that there is too wide variation of the amplitude, which is a disadvantage of the
binomial arrays. The overall efficiency of such an antenna would be low. Besides, the binomial array has
a relatively wide beam. Its HPBW is the largest as compared to the uniform or the Dolph—-Chebyshev

array.
An approximate closed-form expression for the HPBW of abinomial array withd=N2is
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HPBW = (6.52)

where L = (N-1)d isthe array length.
The directivity of abroadside binomial array with spacing d = M2 can be calculated as:
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Dy ~1.77/N =1.77:/1+ 2L/ (6.52)

The array factor of a 10 element broadside binomial array (N = 10) is shown below.
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Fig.6.17 Radiation pattern for 10- element broadside binomial array
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6.3.8 Dolph—Chebyshev array:

Dolph proposed (in 1946) a method to design arrays with any desired sidelobe levels and any HPBWS.
This method is based on the approximation of the pattern of the array by a Chebyshev polynomial of
order m, high enough to meet the requirement for the side-lobe levels.

Chebyshev Polynomials: The Chebyshev polynomia of order mis defined by
(-y)m cosh(m- cos‘l(|z|)), z<-1
To(2)= cos(m~ cos’l(z))—ls z<1, (6.53)

cosh (m : cos‘l(z)), z>1

A Chebyshev polynomia T(2) of any order m can be derived from arecursion formula, provided Tp,1(2)
and T,,2(2) are known, in the following way:

To(2)=22T,4(2) - Trn(2) (6.54)

From the above equation we can express the Chebyshev polynomials as:

(6.55)

m=4,T,(z)=82" -82° +1
m=5,T;(z)=162° - 20z° + 5z

The array factor expressed in (6.46) and (6.47) is the summation of cosine terms and the largest
harmonics of the cosine terms is one less than the total number of elementsin the array. Each cosine term
having an argument which is the interger multiple of the fundamental frequency can be expressed as a
series of cosine functions with the fundamental frequency as the argument. i.e.

m=0 cos(mu)=1

m=1 cos(mu)=cosu (6.56)
m=2 cos(mu)= cos 2u= 2cos2u-1

m=3 cos(mu)=cos 3u= 4cos3u — 3cos u

If the -1 < z < 1, the Chebyshev polynomials are related to the cosine functions. So by comparing
equation (6.55) and (6.56) we see that the Chebyshev argument z is related to cosine argument u by

Z=Cosu=>Uu=cos 'z

e.g. cos(2u) can be expressed as



005(2 cos™

! z): 2[005(005‘1 z)]2 ~1=272* -1=T,(2)

Similarly:

m=0,cog(mu)=Ty(z)=1
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m=5,cos(mu)= cos(5u)=Ts(z) =162° — 20z° + 5z

Properties of the Chebyshev polynomials:
1) All polynomials of any order m pass through the point (1, 1).
2) Withintherange -1< z< 1, the polynomials have values within [-1, 1].
3) All nullsoccur within-1< z< 1.

4) The maximaand minimainthe ze [—ZL 1] range have values +1 and -1, respectively.

5) The higher the order of the polynomial, the steeper the slope for |4 >1.

1(2)

Tschebyscheff polynimials

1 0 T T T T
8 4
6 i
4 4
X:1
2 Y: 1
—— —_— —
-2 4
T0(2)
4+ —T1(2) J
T2(2)
6 T3(z) i
T4(2)
8 T5(2) -
-10 1 1 1 1 1 1
-2 -1.5 -1 -0.5 0 0.5 1 1.5

z

Fig. 6.18 Plot of Chebyshev polynomials

(6.57)



Lecture-8

6.3.9 Chebyshev Array Design

In this case, the main goal is to approximate the desired AF with a Chebyshev polynomial such that
e The side-lobe level meets the requirements, and
e The main beam width is as small as possible.

An array of N elements has an AF approximated with a Chebyshev polynomial of order m, which is
always m = N-1.
where N = 2M, if N is even; and N =2M+1, if N is odd.

Statement: Design a broadside Dolph-Tschebyscheff array of N elements with spacing d between the
elements. The sidelobes are Ry dB below the maximum of the major lobe. Find the excitation co-efficients
and form the array factor.

Procedure:

1. Select the appropriate AF for the total number of elements N.

M
(AF),y = Zan cos[(zn_l) kd cos 6] N =2M
n=1

2
M +1
(AF) o041 = Zan cos[(n-21)kd cos 4] N =2M+1
n=1
2. Replace each cos(mu) term in the array factor by its appropriate expansion in terms of powers of
cos(u).
3. Determine the point z = z; such that T,= R, (\Voltage ratio). Find z, such that
Ry =Tn1(Z) = cosh[(N ~1)cosh™* ZOJ
-1
2y = cogh{COSh—RO:|
N-1
4. Substitute cos(u):i in the array factor of step 2. This substitution normalizes the array factor

Zg

sidelobes to a peak value of unity.

5. Equate the array factor of step 4 to Ty.1 (z) and determine the array coefficients.

Example-6: Design a Dolph—Chebyshev array (broadside) of N = 10 elements
with a major-to-minor lobe ration of Ry=26dB. Find the excitation coefficients.



Solution:
The order of the Chebyshev polynomial is m = N-1 = 9. The AF for an even-number array is:

5
AR,y :Zancos[(Zn—l)uJ
n=1
u :ﬂcose, M =5.
A

Step 1: The array factor for 10 element array :

AFg =8, cosu + a, cos3u + az Cosdu + a4 cos7u +ag cosOu
Expand the cos(mu) terms of powers of cosu :

cos3u = 4cosgu—3r:osu,
cos5u = 16¢0s° U — 20cosdu +5cosu,
cos7u = 64cos’ u—112cos®u +56¢0s° U — 7cosu,

cos9u = 256c0s° u—576¢os’ u +432cos®u —120cos®u +9cosu

Step 2: Determine z,:
Ry =26 dB

26,
Ry =102 20

cosh [Qcosh‘l(z0 )} =20,
zg=cosh 0.41 = z7=1.08515

Step 3: Express the AF from Step 1 in terms of cosu=1z2/z2,

Zy
3
+%-(4a, — 20a5 + 562, ~120a; )
Zy
5
+ 2 (16a; ~112a, + 432as)
Zy
7
+2(64a, —576as)
Zy
Z9
+—(256ag ) =
Zg ( 5)

=97 -1207% + 4322° - 57627 + 2567°
To(2)

Step 4: Finding the coefficients by matching the power terms:



256a5 = 25670 = a5 = 2.0860

64a, —576as = -5762] = a, = 2.8308

16ag —112a, +432a5 = 4322 —>a, = 4.1184

4a, - 20a; +56a, —120a; = -120z) = a, =5.2073

a — 3a2 + 5a3 - 7a4 + 935: 92(9) = a4 = 5.8377

Normalize coefficients with respect to edge element (N =5):

az =1, a, =1.357; a;=1.974; a, =2.496; a, =2.789
5 4 3 2 h
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6.4 Planar array

A planar array provides a large aperture and may be used for directional beam controlled by varying the
relative phase of each element, symmetrical patterns with low side lobes, much higher directivity (narrow
main beam) than that of their individual.

Array Factor

dy-ae-d 2, mle-dly o/

Fig.6.19 Planar array

If M elements are initially placed along x-axis, the array factor can be expressed as
i j(m-1)(kd, sin@cos g+ )
AF, = ImleJ m- «Sin@cosg+p, (6.58)
=1

It is assumed that all elements are equispaced with an interval of d, and a progressive shift g,. 1,
denotes the excitation coefficient of the element at the point with coordinates x=(m-1)d,, y=0., where
singcosg =cosy, IS the directional cosine with respect to the x-axis (y, is the angle between r and the x-

axis). In the figure above, this is the element of the m™ row and the 1% column of the array matrix. If N
such arrays are placed at even intervals along the y-direction, a rectangular array is formed. We assume
again that they are equispaced at a distance d, and there is a progressive phase shift s, along each row.



We also assume that the normalized current distribution along each of the x-directed arrays is the same
but the absolute values correspond to a factor of 1;,(n=1..,N). Then, the AF of the entire MxN array is

N M - . -
AF = Z Iy, Z|mlej(m—l)(kdxS|necos¢+ﬁx) .ej(n—l)(kdysm03|n¢+ﬁy)
) )

(6.59)
or
AF = SXM 'SVN
i (m-1, snocosg+4,)
SXM =AF, = Imlej m-1)(kd, sin@cos g+ f,
v (6.60)
SVN = AFlY = Z |lnel(n—l)(kdy5|n5c05¢+ﬁy)
=1
In the array factors above
sin 0005¢ =X-T=C0Syy
(6.61)

singcosg=y-T = cosy,

Thus, the pattern of a rectangular array is the product of the array factors of the linear arrays in the x and
y-directions.

In the case of a uniform planar rectangular array, 1., =1;, =1, for all m and n, i.e., all elements have the
same excitation amplitudes. Thus,

M N o
AF — Iozej(m—l)(kdxsinacos¢+,b’x) y Zej(n—l)(kdySInHSIn¢+ﬁy)

(6.62)
m=1 n=1
The normalized array factor is obtained as
) sin[M%} . sin[NWZy]
AF, (0,¢) = : (6.63)
n M sin[%J N sin[wzyj

where
vy =kd,singcosg + fy
yy =kdysindcosg + By

The major lobe (principal maximum) and grating lobes of the terms

sin(M l//xj
2

1
MM sin(%‘j (6.64)



1
YN _W v (6.65)
sin| =L
are located at angles such that
kd, sin @, cos ¢y, + fy = t2mr, m=0,1..,,
kdysing,sing, + B, ==£2nr, n=01..., (6.66)

The principal maximum correspondstom =0, n = 0.

In general, g, and g, are independent of each other. But, if it is required that the main beams of
Sy, ands, intersect (which is usually the case), then the common main beam is in the direction:

0=6yand g=¢y, m=n=0.

If the principal maximum is specified by (6.4), then the progressive phases s, and 8, must satisfy
Py =—kd, sin g, cos ¢, (6.67)

By =—kd singysin gy. (6.68)

When g, and g, are specified, the direction of the main beam can be found by simultaneously solving
(6.67) and (6.68)

B.d
tangy =X~ (6.69)
X2y

2 B 2
== (2] (2]

The grating lobes can be located by substituting (6.67) and (6.68) in (6.66)

sin@ysing, £ n% y
sin@ysingy + m% X (6.71)

tan gy, =

singycosgy + m% «  Sindpsingy + n% y

COS @ SiNGn

SiN Gy = (6.72)

To avoid grating lobes, the spacing between the elements must be less than ﬂ(dy <ZAanddy < /1) . In order a

true grating lobe to occur, both equations (6.71) and (6.72) must have a real solution (6,6 ) -



