Battery Basics

Learning Objectives

- 1) To state the various parts of the battery and their functions
- 2) To indicate the use of the electrochemical series
- 3) To distinguish between primary and secondary batteries
- 4) To indicate the meaning of terms used in the context of battery technology

Electrochemical Device
Electrode phase
Electrolyte phase
Charge Transfer

Energy Storage device

Electrochemical Device

Anode

Cathode

Oxidation

Loss of electrons

Reduction

Gain of electrons

The Electrochemical Cell Standard Half Cell and SHE

Standard Electrode Potential

 $Au^{3+} + 3e^- \rightarrow Au$ + 1.420 V $Pt^{2+} + 2e^- \rightarrow Pt$ + 1.200 V $O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$ +1.229V $Ag^+ + e^- \rightarrow Ag$ + 0.800 V $Cu^{2+} + 2e^- \rightarrow Cu$ +0.340V $2H^+ + 2e^- \rightarrow H_2$ 0.000 V $Pb^{2+} + 2e^- \rightarrow Pb$ -0.126V $Ni^{2+} + 2e^- \rightarrow Ni$ -0.250V $Cd^{2+} + 2e^- \rightarrow Cd$ -0.403V $Zn^{2+} + 2e^- \rightarrow Zn$ -0.763 V $Li^+ + e^- \rightarrow Li$ -3.401V

Standard Electrochemical Series

Energy Storage Device: Fuel and oxidant are stored within the device.

Energy Conversion Device: Fuel and oxidant are stored external to the device

Cell:

A single electrochemical unit; i.e. one anode, one cathode, and the electrolyte

Battery:

A collection of cells in series or parallel

Primary Cell: Single use power source

Secondary Cell: Can be recharged

Thermodynamics

Thermodynamics Cell Voltage

Thermodynamics Cell Voltage

Kinetics

Thermodynamics Cell Voltage

Kinetics

Cell Current

Cell characteristics:

Conclusions

- 1) Batteries have specific parts that can have dramatically opposite functions
- 2) The electrochemical series is the starting point to understand Battery voltages
- 3) Primary and secondary batteries are both commonly used

Battery Testing and Performance

Learning Objectives

- To draw a schematic of the typical battery test process
 To indicate the significance of C-Rate
 To be familiar with the typical discharge and charge curves
- 4) To indicate the effect of the C-Rate on the chargedischarge curve
- 5) To indicate the significance of the polarization curve

The C-Rate

The rate at which the battery is discharge or charged, relative to its capacity

The C-Rate

The rate at which the battery is discharge or charged, relative to its capacity

1 C Rate => Discharge or Charge in 1 hour
2 C Rate => Discharge or Charge in ½ hour
5 C Rate => Discharge or Charge in 12 minutes

0.1 C Rate => Discharge or Charge in 10 hours

Terminology associated with use

State of charge: % of maximum capacity that is remaining unused

Depth of Discharge: % of maximum capacity that has been discharged

Cycle life: Number of cycles before the battery fails to meet performance specifications. Affected by Depth of Discharge

Discharge – Charge curves

Discharge – Charge curves

Discharge – Charge curves

Effect of C-Rate on Discharge

Polarization curve

A comparison between two cells

Conclusions

- 1) C-Rate indicates the rate at which the battery is being charged or discharged relative to its capacity
- 2) Charge discharge curves typically show steady performance of the batteries excepting close to the fully charged and fully discharged conditions
- 3) The polarization curve enables comparison between batteries from the perspective of power delivery

Common Battery Structures and Types

Learning Objectives

1) Become familiar with the different battery structures

2) Become familiar with common battery types3) Indicate advantages and disadvantages of these different battery types

Different Battery Structures

- Cylindrical Cell
- Button cell
- Prismatic cell
- Pouch cell

Cylindrical cell

Prismatic cell

Pouch cell

Lead-Acid:

Rechargeable

High current density

Pb H₂SO₄ PbO₂

Toxic

$Pb(s) + H_2SO_4 \rightarrow PbSO_4 + 2H^+ + 2e^-$

 $PbO_{2}(s) + H_{2}SO_{4} + 2H^{+} + 2e^{-} \rightarrow PbSO_{4} + 2H_{2}O$

Rechargeable

Ni-Cd (NiCad)

High cycle life (much more than NiMH), reliable

Lower capacity than NiMH, toxic, memory effect

 $Cd + 2OH^- \rightarrow Cd(OH)_2 + 2e^-$

 $2NiO(OH) + 2H_2O + 2e^- \rightarrow 2Ni(OH)_2 + 2OH^-$

Ni-Metal Hydride (NiMH)

Rechargeable

Non toxic, replace Alkaline and NiCd, no memory effect, high capacity, energy density approaches that of Li ion

Can self discharge

 $MH + OH^- \rightarrow M + H_2O + e^-$

 $NiO(OH) + H_2O + e^- \rightarrow Ni(OH)_2 + OH^-$

Lithium Ion

Rechargeable

Lighter than NiMH, better energy density

May self discharge

$LiC_6 \rightarrow C_6 + Li^+ + e^-$

 $CoO_2 + Li^+ + e^- \rightarrow LiCoO_2$

Alkaline

Non-Rechargeable

Inexpensive

May not deliver as much current

$Zn + 2OH^- \rightarrow ZnO + H_2O + 2e^-$

 $2MnO_2 + H_2O + 2e^- \rightarrow Mn_2O_3 + 2OH^-$

Carbon-Zinc

Non-Rechargeable

Very Inexpensive

Very low energy density

 $Zn \rightarrow Zn^{2+} + 2e^{-}$

 $2MnO_2 + 2NH_4Cl + 2e^- \to Mn_2O_3 + 2NH_3 + H_2O + 2Cl^-$

Conclusions

 There are a wide range of battery types
These batteries differ from each other in terms of capacity, environmental friendliness, current densities supported, and cycle life

3) Careful analysis is needed to match a battery with a specific end use

Lithium

Non-Rechargeable

High energy density, light weight

Expensive

Lithium ion Batteries

Learning Objectives

- 1) State the advantages of Lithium based battery chemistry
- 2) Indicate the hazard with Lithium metal based batteries
- 3) Indicate how lithium ion batteries overcome the hazard
- 4) Describe the process of Intercalation
- 5) Indicate the relative position of the energy levels required for stability of the electrolyte

Lithium

One of the most electropositive elements

Light weight (0.53 gm/cm³)

Environmentally friendly

Dendritic growth of Lithium/ SEI

Porous structure that grows on anode with each recharge cycle

Can result in internal short circuit

Dendritic growth of Lithium

Dendritic growth of Lithium

Dendritic growth of Lithium

Intercalaction

Carbon based host materials

LiC₆

LiMn₂O₄

Anode

Cathode

LiPF₆ in EC/DEC Electrolyte (Lithium Hexafluorophosphate in Ethylene Carbonate and Diethyl Carbonate)

Electrolyte Stability Window

Conclusions

 Lithium metal based rechargeable batteries can develop internal short circuit with repeated cycling.
Lithium ion batteries overcome this issue
Intecalation and host compounds make Li-ion batteries safe

4) HOMO and LUMO of electrolyte important in determining electrolyte stability window

Supercapacitors

Supercapacitors, Electric Double Layer Capacitor Ultracapacitor

Learning Objectives

What is a Supercapacitor
How does it differ from a capacitor
What type of applications is it suited for
Typical Materials used

Supercapacitor

- High capacitance
- High energy density
- Lower Voltage
- High cycle life
- Charge and discharge much faster than batteries
- Bridges the gap between capacitors and rechargeable batteries

Supercapacitor

- Regenerative braking
- Loading and unloading activities
- Start-Stop of electric vehicles

Supercapacitor: Electrical energy, uses ions

Battery:

Chemical energy, uses ions

Capacitor:

Electrical energy, uses electrons

Materials Used:

Electrode:

Activated carbon, Graphene, Carbon nanotubes

Activated Carbon: Natural carbons and polymers heat treated in inert atmosphere Graphene can restack Carbon nanotubes – cylindrical surface is used

Materials Used:

Electrolyte:

Aqueous electrolytes:

Voltage restricted to 1.23 V

Organic electrolytes:

Ionic liquids:

Organic salts with no solvents and melting point below 100 °C

Lower conductivity (Propylene Carbonate)

Conclusions

- 1) Supercapacitors bridge the gap between capacitors and batteries
- 2) High surface area carbon materials used in electrodes
- 3) Aqueous, organic as well as ionic liquids considered as electrolytes