

Measures of Dispersion

Example: Monthly Salaries of three Dep	Dept. ^t A	Dept. B	Dept. C
• Range X _{max} – X _{min}	25000	24000	18000
 Interquartile Range 	25000	26000	32000
	25000	23000	15000
	25000	27000	35000

Quartiles

- Quartiles are the percentage points that break down the ordered data set into quarters.
- The first quartile is the 25^{th} percentile. It is the point below which lie 3/4 of the data. It is the lower quartile. Q1= n+1/4 ordered observation.
- The second quartile is the 50th percentile. It is the point below which lie 1/2 of the data. This is also called the median. It is the middle quartile.
- The third quartile is the 75th percentile. It is the point below which lie 1/4 of the data. It is the upper quartile. Q3=3(n+1)/4 ordered observation.

Example (Continued) Percentiles

- Find the 50th, 80th, and the 90th percentiles of this data set.
- To find the 50th percentile, determine the data point in position (n + 1)P/100 = (20 + 1)(50/100) = 10.5.
- Thus, the percentile is located at the 10.5th position.
- The 10th observation is 16, and the 11th observation is also 16.
- The 50th percentile will lie halfway between the 10th and 11th values (which are both 16 in this case) and is thus 16.

Anita Patra

Example (Continued) Percentiles

- To find the 80th percentile, determine the data point in position (n + 1)P/100 = (20 + 1)(80/100) = 16.8.
- Thus, the percentile is located at the 16.8th position.
- The 16th observation is 19, and the 17th observation is also 20.
- The 80th percentile is a point lying 0.8 of the way from 19 to 20 and is thus 19.8.

Example 1-2 (Continued) Percentiles

- To find the 90th percentile, determine the data point in position (n + 1)P/100 = (20 + 1)(90/100) = 18.9.
- Thus, the percentile is located at the 18.9th position.
- The 18th observation is 21, and the 19th observation is also 22.
- The 90th percentile is a point lying 0.9 of the way from 21 to 22 and is thus 21.9.

Quartiles – Special Percentiles

- **Quartiles** are the percentage points that break down the ordered data set into quarters.
- The first quartile is the 25th percentile. It is the point below which lie 3/4 of the data which is larger.
- The second quartile is the 50th percentile. It is the point below which lie 1/2 of the data. This is also called the median.
- The third quartile is the 75th percentile. It is the point below which lie 1/4 of the data which is larger.

Example : Finding Quartiles

Sales 9 6	Sorted Sales 6 9	_	(n+1)P/100 Position	Quartiles
12 10 13 15 16	$ \begin{array}{c} 10\\ 12\\ 13 \\ 14\\ 14\\ 14 \end{array} $	—— First Quartile	(20+1)25/100=5.25	13 + (.25)(1) = 13.25
14 14 16 17 16	15 16 16 ←	Median	(20+1)50/100=10.5	16 + (.5)(0) = 16
24 21 22 18 19	17 18 18 18 19 20	—— Third Quartile	(20+1)75/100=15.75	18 + (.75)(1) = 18.75
18 20 17	21 22 24	CS Anita	REM a Patra	

Quartiles for grouped data

$$Q_3 = L + (3n/4) - m x c$$

where

- L = lower limit of the class in which quartile lies.
- n = Total no. of observations = $\sum f$
- f = the frequency of the class in which the quartile observation lies.
- C = Class interval of the class in which the q REM observation lies.
- Anita Patra m = the cumulative frequency of the class preceding the one in which the Quartile lies.