

SESSION-3

SAMPLES AND POPULATION

- Population-The population consists of the set of all measurements in which the investigator is interested. It is also called as universe.
- Sample-A sample is a subset of measurements selected from the population for analysis.
- Statistic- A statistic is a summary measure computed from sample data.
- Parameter- It is a summary measure that describes a characteristic of an entire population.
- Statistical Inference- A conclusion drawn about a population based on the information in a sample from the population is called a statistical inference.

Inferential methods use sample data to calculate summary measures called *statistics* that decision makers can use to estimate the *parameters* characteristics of the entire population.

Example: Students of CUTM practicing Yoga.

- Population
- Sample
- Sample & Population relative (If compared to all Universities of Odisha)

SAMPLING VS. CENSUS

- A sample is less time-consuming than a census
- A sample is less costly to administer than a census
- A sample is less cumbersome and more practical to administer than a census.

TYPES OF SAMPLING

Non-probability samples -Here the items or individuals are chosen without regard to their probability of selection.

- Judgment sampling
- Convenience sample

Advantage- convenience, speed, lower cost.

Disadvantage-lack of accuracy due to selection bias, lack of generalizability of the results.

Probability samples – A probability sample is one in which the subjects of the sample are chosen on the basis of their probability.

- Simple Random sample
- Systematic sample
- Stratified sample
- Cluster sample

TYPES OF SAMPLES USED

(continued)

PROBABILITY SAMPLING

Items in the sample are chosen based on known probabilities

SIMPLE RANDOM SAMPLES

- Every individual or item from the frame has an equal chance of being selected
- Selection may be with replacement or without replacement
- Samples obtained from table of random numbers or computer random number generators

SYSTEMATIC SAMPLES

- Decide on sample size: n
- Divide frame of N individuals into groups of k individuals: k=N/n
- Randomly select one individual from the 1st group
- Select every kto is al thereafter

N = 64
n = 8
First Group
k = 8

STRATIFIED SAMPLES

- Divide population into two or more subgroups (called *strata*) according to some common characteristic
- A simple random sample is selected from each subgroup, with sample sizes proportional to strata sizes
- Samples from subgroups are combined into one

CLUSTER SAMPLES

- Population is divided into several "clusters," each representative of the population
- A simple random sample of clusters is selected
 - All items in the selected clusters can be used, or items can be chosen from a cluster using another probability sampling technique

ADVANTAGES AND DISADVANTAGES

- Simple random sample and systematic sample
 - Simple to use
 - May not be a good representation of the population's underlying characteristics
- Stratified sample
 - Ensures representation of individuals across the entire population
- Cluster sample
 - More cost effective
 - Less efficient (need larger sample to acquire the same level of precision)

EVALUATING SURVEY WORTHINESS

- What is the purpose of the survey?
- Is the survey based on a probability sample?
- Coverage error appropriate frame?
- Nonresponse error follow up
- Measurement error good questions elicit good responses
- Sampling error always exists

TYPES OF SURVEY ERRORS

- Coverage error or selection bias
 - Exists if some groups are excluded from the frame and have no chance of being selected
- Nonresponse error or bias
 - People who do not respond may be different from those who do respond
- Sampling error
 - Variation from sample to sample will always exist
- Measurement error
 - Due to weaknesses in question design, respondent error, and interviewer's effects on the respondent

TYPES OF SURVEY ERRORS

(continued)

Coverage error

Excluded from frame

Non response error

Follow up on nonresponses

Sampling error

ń	Ì	Ŵ	Î	ŕ	Ŵ	İ	Ĥ	Ì		Î		ĥ	Î	
ġ			t		Å	i.	t	İ	Ň	İ	Ť	Ň	Å	
	Ì	ĥ	ĥ	İ		Î	Ĥ	Ì	Ř	Î	Î	ĥ		
ŝ		İ	ŕ	ţ.			Ŵ		İ	Ň	ŕ	ŝ	t	Í

Random differences from sample to sample

• Measurement error

Bad or leading question