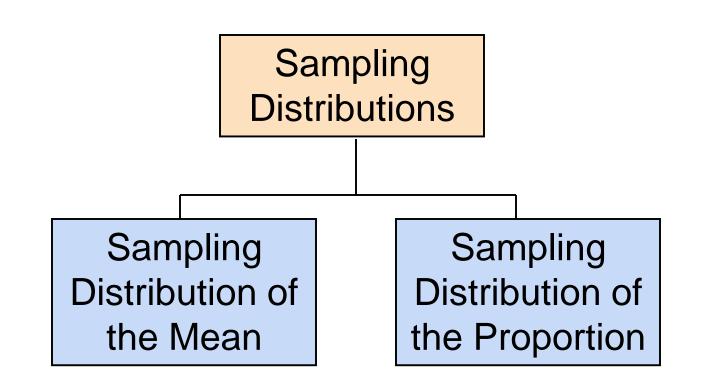


Sampling Distributions



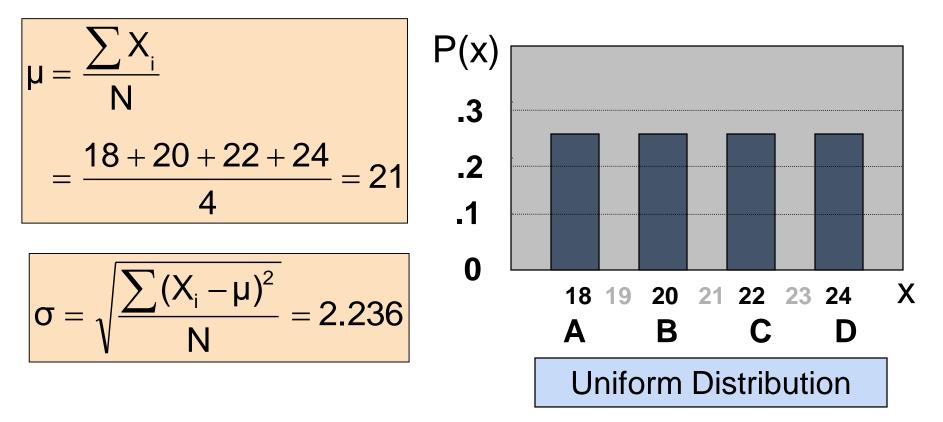
Sampling Distributions

 A sampling distribution is a distribution of all of the possible values of a statistic for a given size sample selected from a population

- Assume there is a population ...
- Population size N=4
- Random variable, X, is age of individuals
- Values of X: 18, 20, 22, 24 (years)

(continued)

Summary Measures for the Population Distribution:



(continued)

Now consider all possible samples of size

n=2

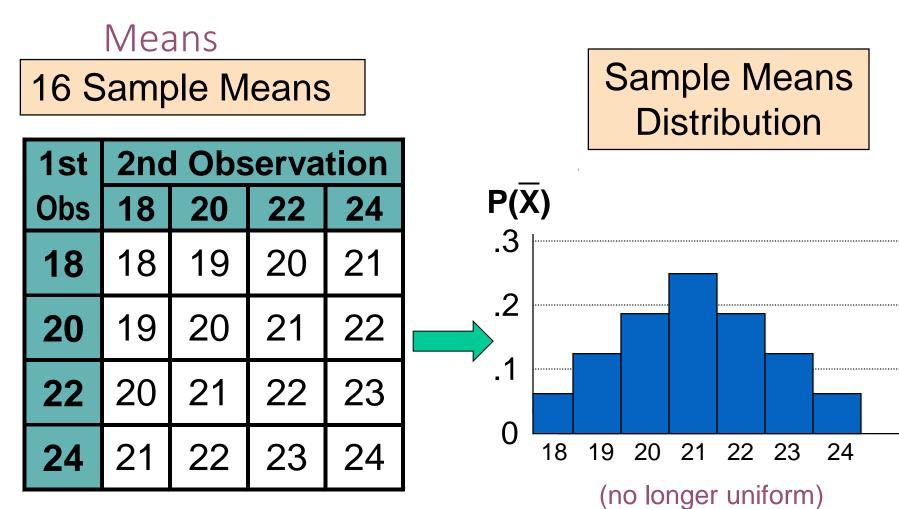
1 st Obs	2 nd Observation18202224						Г		San Meai	-
18	18,18	18,20	18,22	18,24		1st	2nc	l Obs	serva	tion
20	20,18	20,20	20,22	20,24		Obs	18	20	22	24
22	22,18	22,20	22,22	22,24		18	18	19	20	21
24	24,18	24,20	24,22	24,24		20	19	20	21	22
16 possible samples							20	21	22	23

16 possible samples (sampling with replacement)

(continued)

Y

Sampling Distribution of All Sample



(continued)

Summary Measures of this Sampling

Distribution:

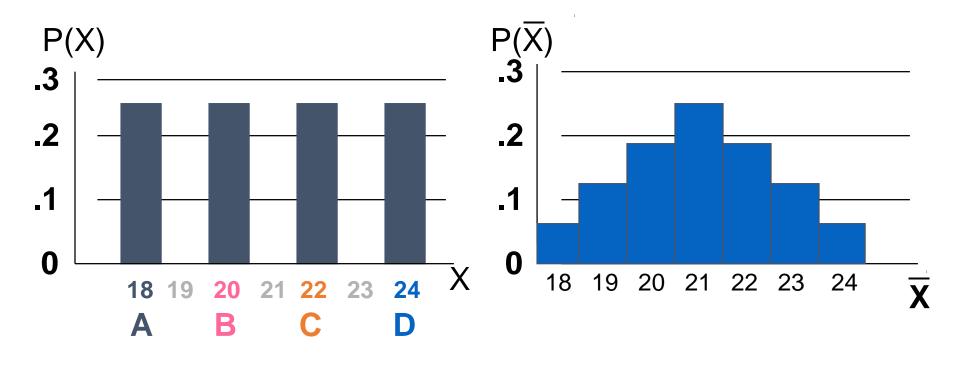
$$\mu_{\overline{X}} = \frac{\sum \overline{X}_{i}}{N} = \frac{18 + 19 + 21 + \dots + 24}{16} = 21$$

$$\sigma_{\overline{X}} = \sqrt{\frac{\sum (\overline{X}_{i} - \mu_{\overline{X}})^{2}}{N}}$$
$$= \sqrt{\frac{(18 - 21)^{2} + (19 - 21)^{2} + \dots + (24 - 21)^{2}}{16}} = 1.58$$

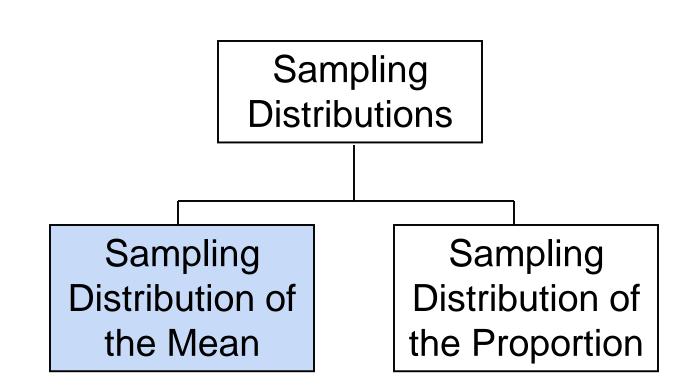
Comparing the Population with its Sampling Distribution

$$\begin{array}{c} \text{Population} \\ N=4 \end{array} \\ \mu=21 \quad \sigma=2.236 \end{array}$$

Sample Means Distribution n = 2 $\mu_{\overline{X}} = 21$ $\sigma_{\overline{X}} = 1.58$



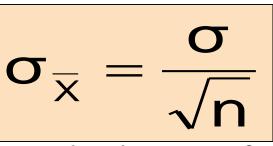
Sampling Distribution of the Mean



Standard Error of the Mean

- Different samples of the same size from the same population will yield different sample means
- A measure of the variability in the mean from sample to sample is given by the Standard Error of the Mean:

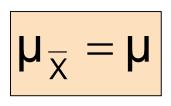
(This assumes that sampling is with replacement or sampling is without replacement from an infinite population)



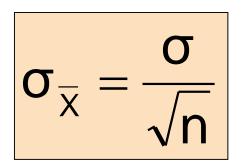
 Note that the standard error of the mean decreases as the sample size increases

If the Population is Normal

• If a population is normal with mean μ and standard deviation σ , the sampling distribution of is also normally distributed with X



and



Χ

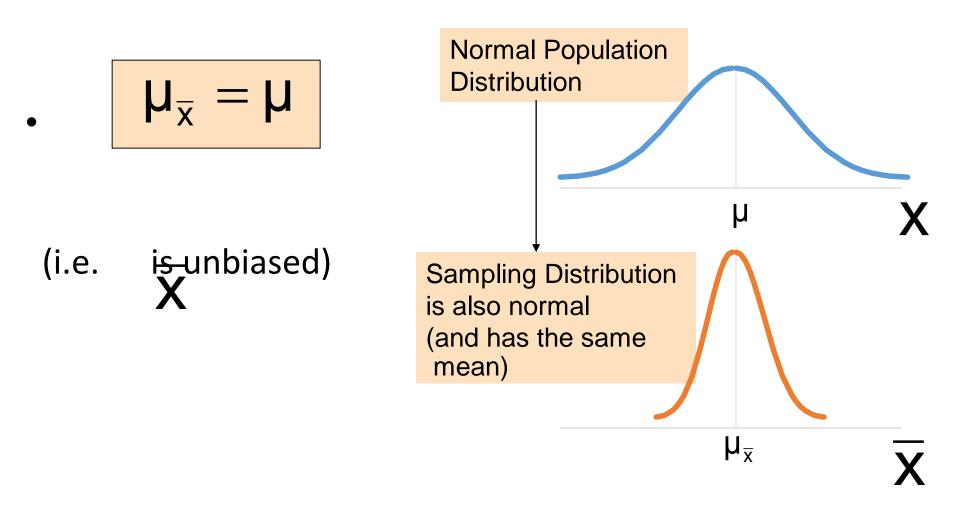
Z-value for Sampling Distribution of the Mean

• Z-value for the sampling distribution of 2.

$$Z = \frac{(\overline{X} - \mu_{\overline{X}})}{\sigma_{\overline{X}}} = \frac{(\overline{X} - \mu)}{\frac{\sigma}{\sqrt{n}}}$$

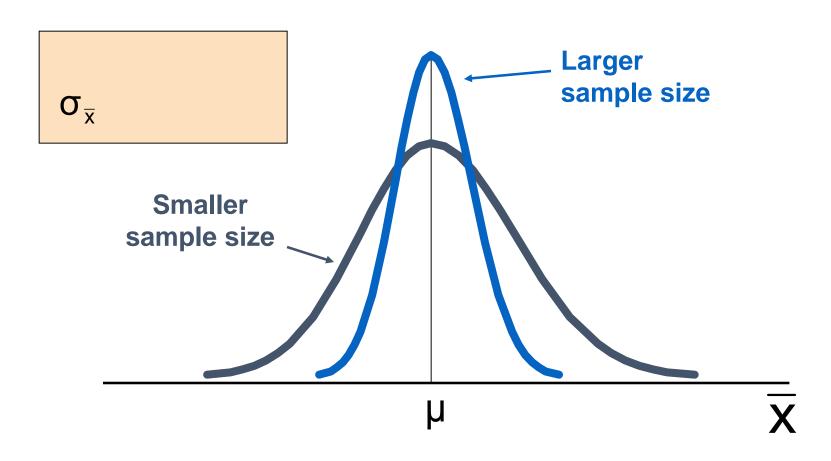
- where:
- re: X = sample mean $\mu = \text{population mean}$ $\sigma = \text{population standard deviation}$ n = sample size

Sampling Distribution Properties



Sampling Distribution Properties

(continued)

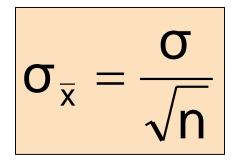


If the Population is **not** Normal

- We can apply the Central Limit Theorem:
 - Even if the population is not normal,
 - ...sample means from the population will be approximately normal as long as the sample size is large enough.

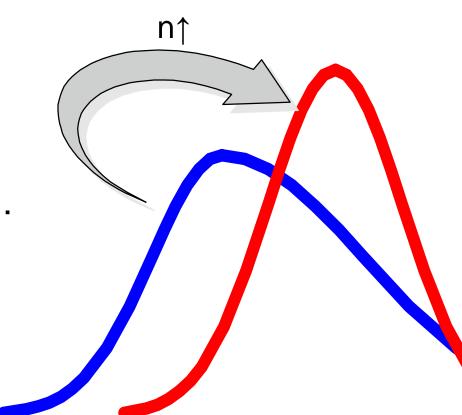
Properties of the sampling distribution:

$$\mu_{\overline{x}} = \mu_{and}$$



Central Limit Theorem

As the sample size gets large enough...

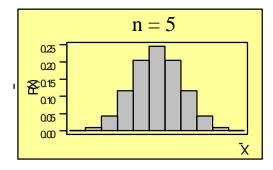


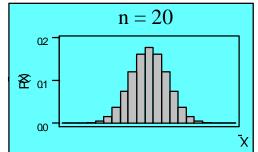
the sampling distribution becomes almost normal regardless of shape of population

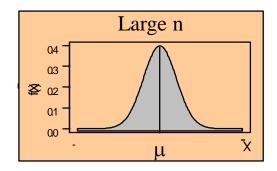
The Central Limit Theorem

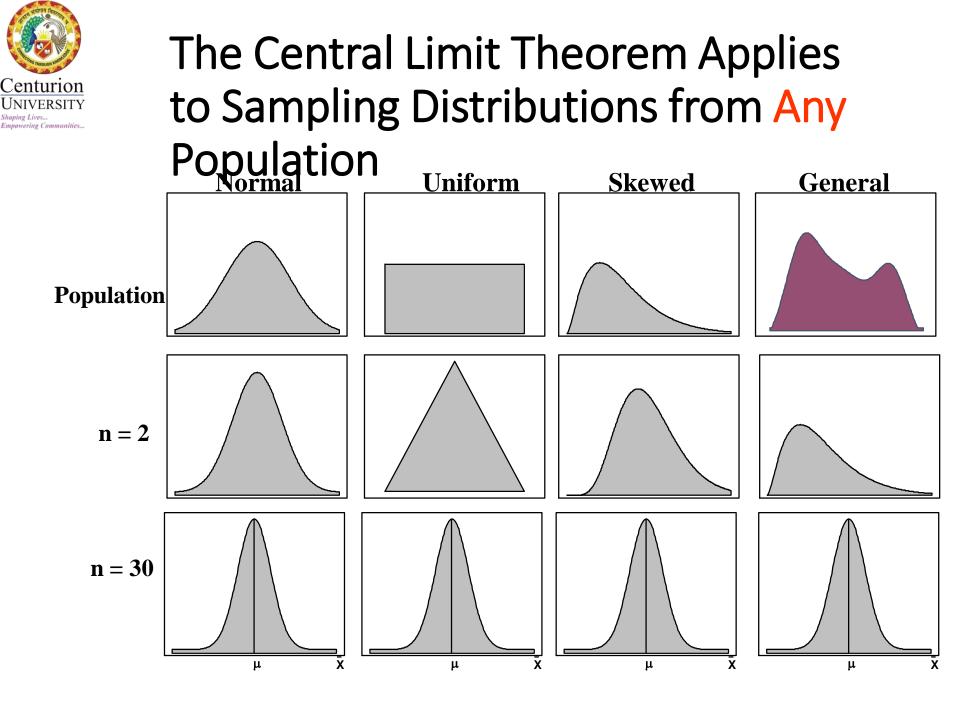
When sampling from a population with mean μ and finite standard deviation σ , the sampling distribution of the sample mean will tend to a normal distribution with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$ as the sample size becomes large (n > 30).

For "large enough"
$$n: \overline{X} \sim N(\mu, \sigma^2/n)$$



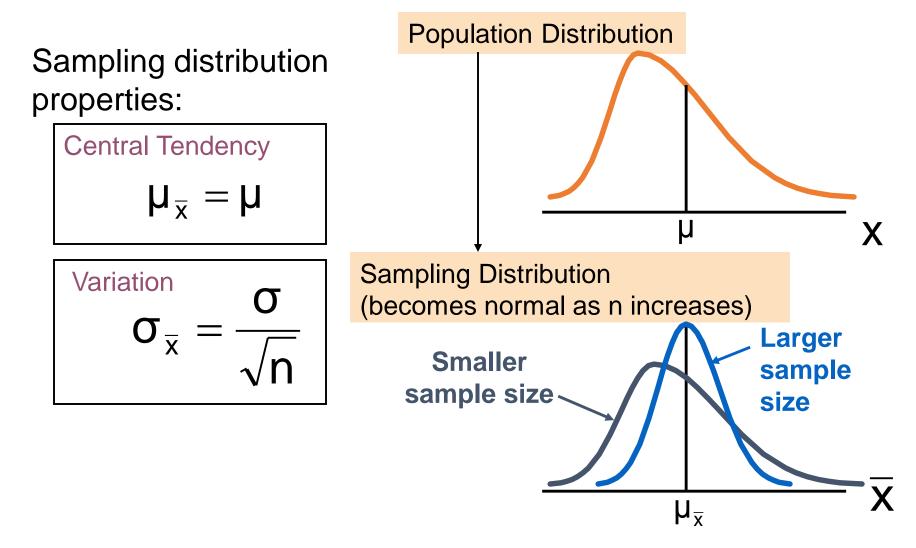






If the Population is **not** Normal

(continued)



How Large is Large Enough?

- For most distributions, n > 30 will give a sampling distribution that is nearly normal
- For fairly symmetric distributions, n > 15
- For normal population distributions, the sampling distribution of the mean is always normally distributed

Example

- Suppose a population has mean μ = 8 and standard deviation σ = 3. Suppose a random sample of size n = 36 is selected.
- What is the probability that the sample mean is between 7.8 and 8.2?

Example

(continued)

Solution:

- Even if the population is not normally distributed, the central limit theorem can be used (n > 30)
- ... so the sampling distribution of is approxi

is approximately normal **X**

- ... with mean = 8
- ...and standard deviation

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}} = \frac{3}{\sqrt{36}} = 0.5$$

Example

(continued)

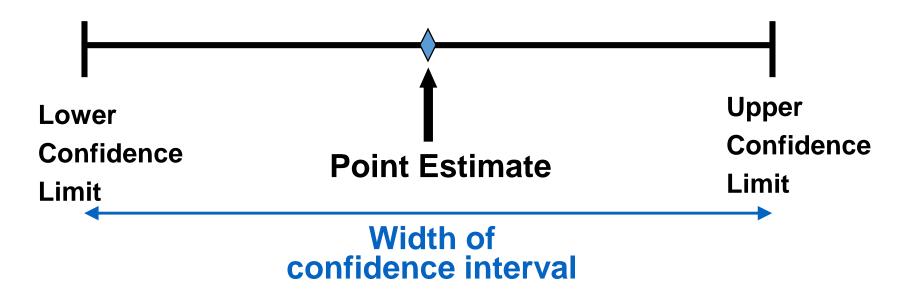
Solution (continued):

$$P(7.8 < \overline{X} < 8.2) = P\left(\frac{7.8 - 8}{3/\sqrt{36}} < \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} < \frac{8.2 - 8}{3/\sqrt{36}}\right)$$
$$= P(-0.4 < Z < 0.4) = 0.3108$$



ESTIMATES

- A point estimate is a single number,
- a confidence interval provides additional information about variability



Point Estimates

We can estine Population Para	with a Sample Statistic (a Point Estimate)		
Mean	μ	X	
Proportion	р	ps	

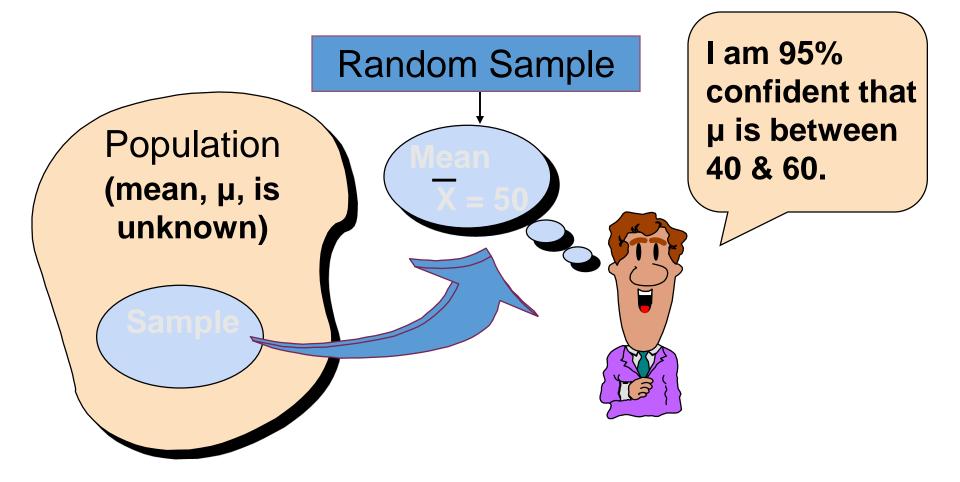
Confidence Intervals

- How much uncertainty is associated with a point estimate of a population parameter?
- An interval estimate provides more information about a population characteristic than does a point estimate
- Such interval estimates are called confidence intervals

Confidence Interval Estimate

- An interval gives a range of values:
 - Takes into consideration variation in sample statistics from sample to sample
 - Based on observations from 1 sample
 - Gives information about closeness to unknown population parameters
 - Stated in terms of level of confidence
 - Can never be 100% confident

Estimation Process



General Formula

• The general formula for all confidence intervals is:

Point Estimate ± (Critical Value)(Standard Error)

Confidence Level

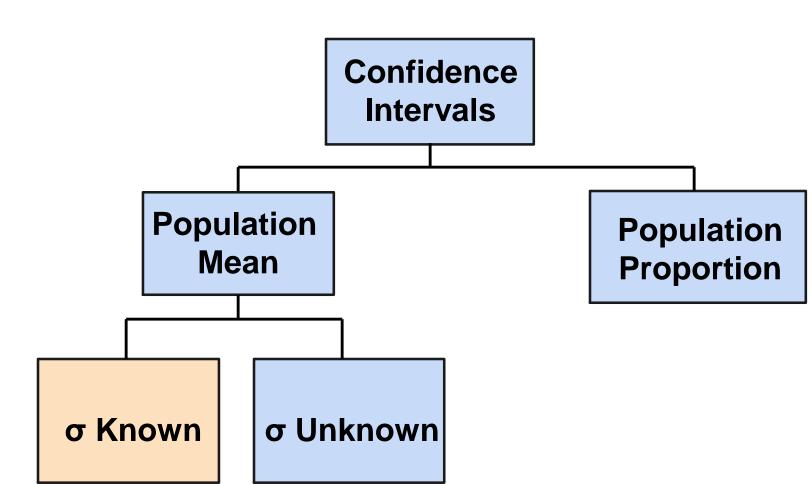
- Confidence Level
 - Confidence for which the interval will contain the unknown population parameter
- A percentage (less than 100%)

Confidence Level, $(1-\alpha)$

(continued)

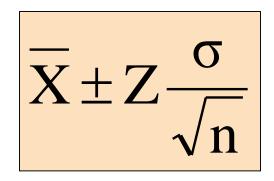
- Suppose confidence level = 95%
- Also written (1 α) = 0.95
- A relative frequency interpretation:
 - In the long run, 95% of all the confidence intervals that can be constructed will contain the unknown true parameter
- A specific interval either will contain or will not contain the true parameter
 - No probability involved in a specific interval

Confidence Intervals



Confidence Interval for μ (σ Known)

- Assumptions
 - Population standard deviation $\boldsymbol{\sigma}$ is known
 - Population is normally distributed
 - If population is not normal, use large sample
- Confidence interval estimate:



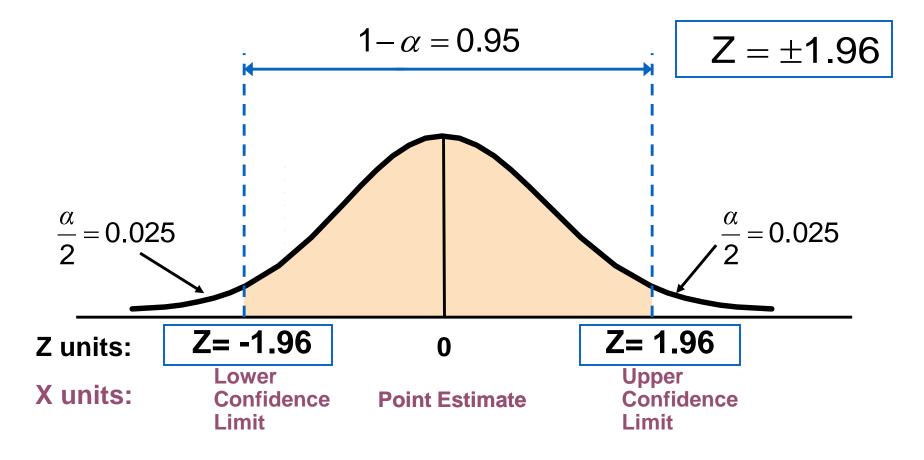
X

• where is the point estimate

Z is the normal distribution critical value for a probability of $\alpha/2$ in each tail σ/\sqrt{n} is the standard error

Finding the Critical Value, Z

• Consider a 95% confidence interval:

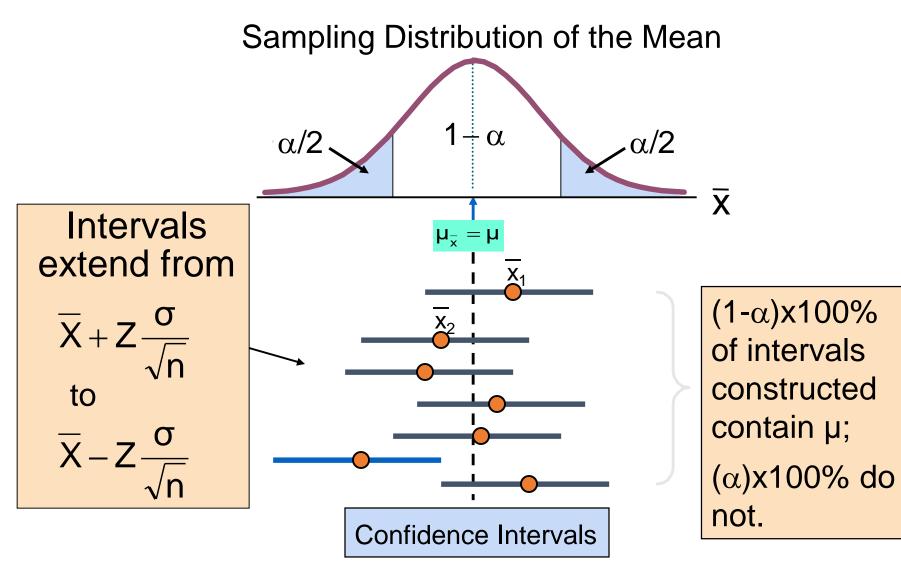


Common Levels of Confidence

 Commonly used confidence levels are 90%, 95%, and 99%

Confidence Level	Confidence Coefficient, $1-\alpha$	Z value		
80%	0.80	1.28		
90%	0.90	1.645		
95%	0.95	1.96		
98%	0.98	2.33		
99%	0.99	2.58		
99.8%	0.998	3.08		
99.9%	0.999	3.27		

Intervals and Level of Confidence



What is a Hypothesis?

- A hypothesis is a claim (assumption) about a population parameter:
 - population mean

Example: The mean monthly cell phone bill of this city is $\mu = Rs.42$

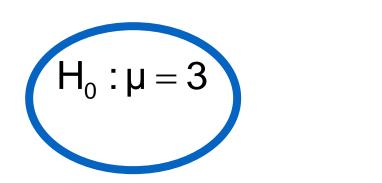
population proportion

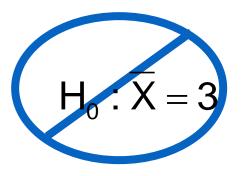
Example: The proportion of adults in this city with cell phones is p = 0.68

The Null Hypothesis, H₀

• States the claim or assertion to be tested

 Is always about a population parameter, not about a sample statistic





The Null Hypothesis, H₀

(continued)

- Begin with the assumption that the null hypothesis is true
 - Similar to the notion of innocent until proven guilty
- Refers to the status quo
- Always contains "=", "≤" or "≥" sign
- May or may not be rejected

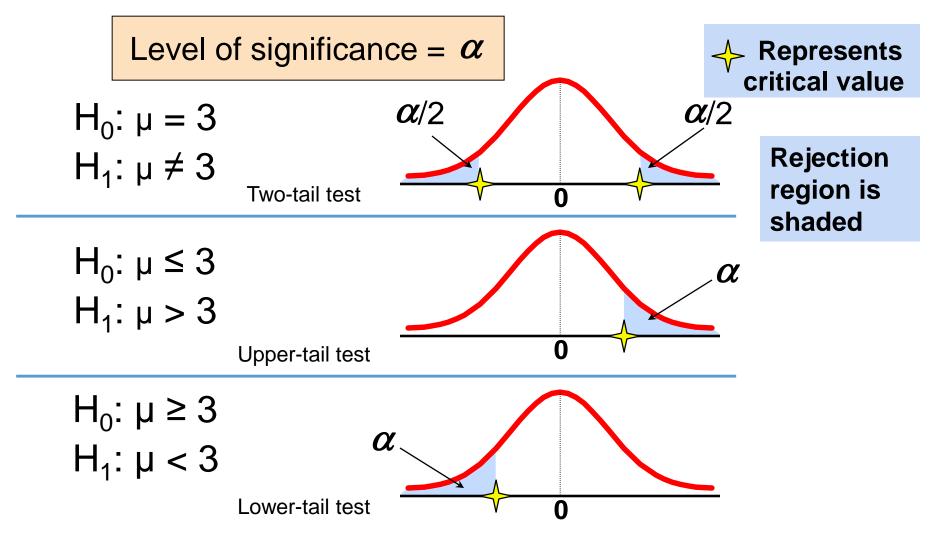
The Alternative Hypothesis, H₁

- Is the opposite of the null hypothesis
 - e.g., The average number of TV sets in U.S. homes is not equal to 3 (H₁: μ ≠ 3)
- Challenges the status quo
- Never contains the "=" , " \leq " or " \geq " sign
- May or may not be proven
- Is generally the hypothesis that the researcher is trying to prove

Level of Significance, α

- Defines the unlikely values of the sample statistic if the null hypothesis is true
 - Defines rejection region of the sampling distribution
- Is designated by α , (level of significance)
 - Typical values are 0.01, 0.05, or 0.10
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test

Level of Significance and the Rejection Region



Errors in Making Decisions

- Type I Error
 - Reject a true null hypothesis
 - Considered a serious type of error

The probability of Type I Error is α

- Called level of significance of the test
- Set by the researcher in advance

Errors in Making Decisions (continued)

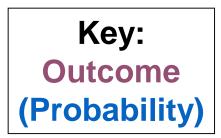
- Type II Error
 - Fail to reject a false null hypothesis

The probability of Type II Error is β

Outcomes and Probabilities

Possible Hypothesis Test Outcomes

	Actual	
Decision	H ₀ True	n H _o False
Do Not Reject H ₀	No error (1 - α)	Type II Error (β)
Reject H ₀	Type I Error (α)	No Error (1-β)



Type I & II Error Relationship

- Type I and Type II errors cannot happen at the same time
 - Type I error can only occur if H₀ is true
 - Type II error can only occur if H₀ is false

If Type I error probability (α) \uparrow , then Type II error probability (β)

Factors Affecting Type II Error

- All else equal,
 - β when the difference between hypothesized parameter and its true value

