

Hypothesis Tests for the Mean

Z Test of Hypothesis for the Mean (σ Known)

• Convert sample statistic () to a $\overline{\underline{X}}$ test statistic

Critical Value Approach to Testing

- For a two-tail test for the mean, σ known:
- Convert sample statistic () to test statistic (Z statistic)
- Determine the critical Z values for a specified level of significance $\,\alpha\,$ from a table or computer
- Decision Rule: If the test statistic falls in the rejection region, reject H₀; otherwise do not reject H₀

Two-Tail Tests

 There are two cutoff values (critical values), defining the regions of rejection

One-Tail Tests

• In many cases, the alternative hypothesis focuses on a particular direction

This is a lower-tail test since the alternative hypothesis is focused on the lower tail below the mean of 3

H₀: μ ≤ 3 H₁: μ > 3 This is an upper-tail test since the
alternative hypothesis is focused on the upper tail above the mean of 3

Lower-Tail Tests

There is only one critical value, since the rejection area is in only one tail

Upper-Tail Tests

Example: Upper-Tail Z Test for Mean (σ Known)

A phone industry manager thinks that customer monthly cell phone bills have increased, and now average over \$52 per month. The company wishes to test this claim. (Assume $\sigma = 10$ is known)

Form hypothesis test:

H ₀ : µ ≤ 52	the average is not over \$52 per month
H ₁ : μ > 52	the average is greater than \$52 per month (i.e., sufficient evidence exists to support the manager's claim)

Example: Find Rejection Region

(continued)

• Suppose that α = 0.10 is chosen for this test

Review: One-Tail Critical Value

Example: Test Statistic (continued)

Obtain sample and compute the test statistic

Suppose a sample is taken with the following results: n = 64, X = 53.1 ($\sigma = 10$ was assumed known)

• Then the test statistic is:

