

LECTURE-5, 6 & 7

Organizing Numerical Data

- The Ordered Array
- Stem-and-leaf Display
- Example for the above two.

- Raw data represents numbers and facts in the original format in which data have been collected.
- Large and massive raw data tend to bewilder so much that the overall patterns are obscured.
- Thus raw data is to be processed to give useful information.

Example of Raw Data:

The weekly sales ('000 units of a product in a region over the past year are-

```
52 61 59 55 63 70 59 77 81 83 69 91 73
```

```
83 90 81 77 77 74 65 33 77 64 49 49 52
```

```
50 45 42 46 39 29 38 41 43 23 26 27 22
```

29 31 29 31 30 30 29 40 44 45 46 47 53.

Group Data

- Dividing data into group or classes or intervals
 Groups may be
- Mutually exclusive
- Exhaustive
- Equal width

Tabulation of Numerical Data

The frequency distribution

- --- It is a summary table in which the data are arranged into numerically ordered class groups or intervals.
- Selecting the number of classes
- Obtaining the class interval
- Determining the width of the class
- Establishing the class boundaries
- Relative frequency distribution
- Cumulative distribution
- Advantage and Disadvantage.

Frequency Distribution

- Table with two columns listing:
 - Each and every group or class or interval of values
 - Associated frequency of each group
 - · Number of observations assigned to each group
 - Sum of frequencies is number of observations
 - N for population
 - n for sample
- Class midpoint is the middle value of a group or class or interval
- Relative frequency is the percentage of total observations in each class
 - Sum of relative frequencies = 1

Example: Frequency Distribution

x Spending Class (\$)	f(x) Frequency (number of customers)	f(x)/n Relative Frequency		
0 to less than 100	30	0.163		
100 to less than 200	38	0.207		
200 to less than 300	50	0.272		
300 to less than 400	31	0.168		
400 to less than 500	22	0.120		
500 to less than 600	13	0.070		
	184	1.000		

- Example of relative frequency: 30/184 = 0.163
- Sum of relative frequencies = 1

Cumulative Frequency Distribution

x Spending Class (\$)	F(x) Cumulative Frequency	F(x)/n Cumulative Relative Frequency		
0 to less than 100	30	0.163		
100 to less than 200	68	0.370		
200 to less than 300	118	0.641		
300 to less than 400	149	0.810		
400 to less than 500	171	0.929		
500 to less than 600	184	1.000		

The **cumulative frequency** of each group is the sum of the frequencies of that and all preceding groups.

Graphical Representation of Data

- The Histogram
- The Polygon
- Stem and Leaf Display
- The Bar chart
- The Scatter Diagram
- The Pie Chart
- The Pareto Diagram
- The Side-by-side Bar Chart

Histogram

- A histogram is a chart made of bars of different heights.
 - ✓ Widths and locations of bars correspond to widths and locations of data groupings
 - ✓ Heights of bars correspond to frequencies or relative frequencies of data groupings

Histogram Example

Frequency Histogram

Histogram Example

Relative Frequency Histogram

Frequency Polygon and Ogive

Relative Frequency Polygon

Ogive

(Cumulative frequency or relative frequency graph)

Time Plot

Example: Stem-and-Leaf Display

```
1 122355567
2 0111222346777899
3 012457
4 11257
5 0236
6 02
```

Figure 1-17: Task Performance Times

Pie Chart

Bar Chart

Tabulating and Graphing Bivariate Categorical Data:

Example: Contingency Table or cross-classification table.

	Population (in lakhs)						
	1961	1971	1981	1991	2001		
Rural	200	350	450	580	700		
Urban	150	200	300	350	400		
Total	350	550	750	920	1100		

Further Discussions

- False Base Line
- Net balance graph
- Band graph
- Range Graph
- Subdivided bar diagram
- Broken bars
- Deviation Bar Diagram
- Duo directional bar diagram
- Sliding bar diagram
- Pyramid diagram
- Rectangular Diagram
- Percentage Rectangular Diagram
- Pictograms
- Cartograms