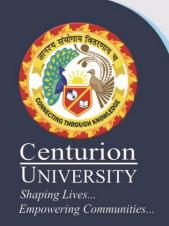

CARBOHYDRATES

Structure and properties

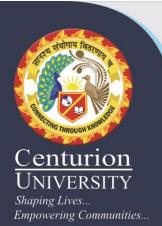
Importance


- Comprise one of the major groups of naturally occurring bio-molecules
- Structural material in plants is mainly cellulose and hemicelluloses
- Contain carbon, hydrogen, and oxygen and is represented by the formula C_x(H₂O)y
- Starch is the important form of storage polysaccharide in plants, and pectins (sucrose) and sugars (glucose)
- Non-carbohydrate organic molecules are conjugated with sugars – glycosides
- Carbohydrates with proteins in animals glycoproteins

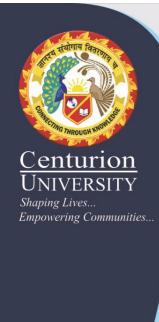
Properties and Importance

Some may contain nitrogen, sulfur, and phosphorus.

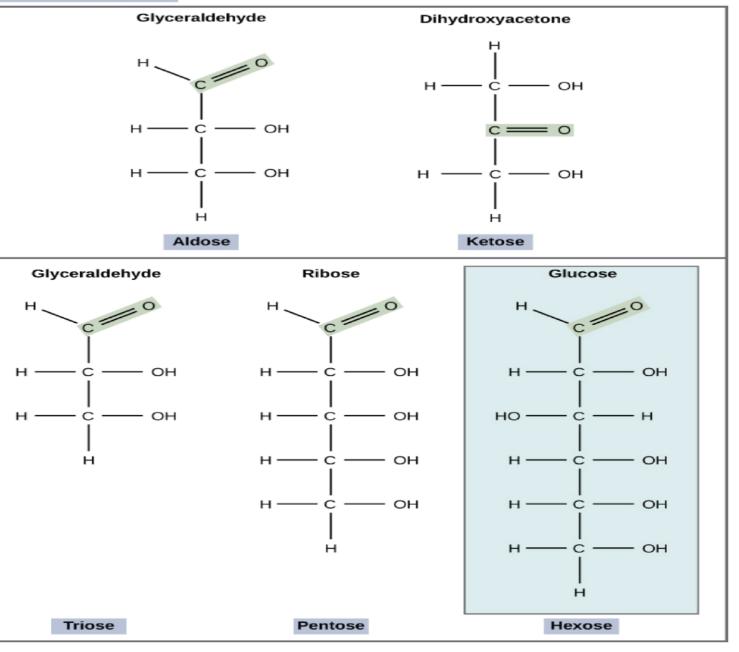
- Chemically defined as polyhydroxy aldehydes or ketones, their derivatives and their polymers.
- Storage form of carbohydrates in animals glycogen
- Chitin found in exoskeleton of lower animals is a polymer of N-acetyl glucosamine.
- Fatty acid esters of sugar alcohol glycerol
- Ribose and deoxyribose constituents of nucleic acids.
- Basic raw material for sugar and sugar products,paper and wood pulp, textiles, plastic, food processing.

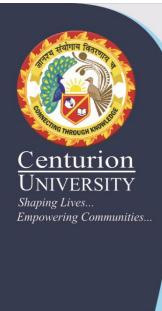

Classification of Monosaccharides

- Classified into three major groups:
 - Monosaccharides
 - Simplest forms, low molecular weight, consisting of a single polyhydroxy aldehyde or ketone unit
 - Crystalline, soluble in water, and sweet in taste
 - Classified as triose, tetrose, pentose based on the number of carbon atoms
 - All monosaccharides are reducing in nature
 - Classified further into simple monosaccharides, and derived monosaccharides


Structure of Monosaccharides

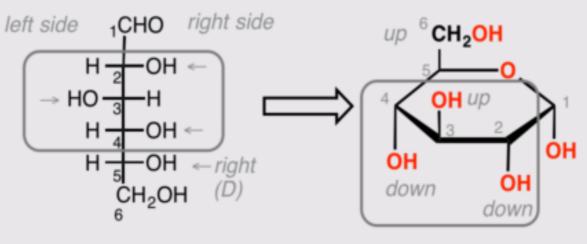
- Represented by three types of formula:
 - Fischer projection constructed on the convention that the tetrahedral apexes connecting the asymmetric carbon atoms be in a line in the plane of projection
 - Haworth represented carbohydrates as cyclic compounds
 - Stable conformational formulae are of chair conformations
- Biose (C₂H₄O₂) glycolic aledhyde is the only member, crystalline, sweet and readily soluble in water
- Trioses (C₃H₆O₂) occur in plant and animal tissues in small amounts and derived from breakdown of glucose
- Tetroses $(C_4H_8O_4)$ Erythrose and threose


Structure of Monosaccharides


- Tetroses $(C_4H_8O_4)$ Erythrose and threose
- Pentoses (C₅H₁₀O₅) Ribose, arabinose, and ribose, and deoxyribose
- Hexoses (C₆H₁₂O₆) glucose (dextrose) main source of energy, occurs in the free state in many fruits (2 -6%), fructose (fruit sugar), galactose (does not occur free in nature but occurs as a constituent of lactose)

Structure of Monosaccharides

MONOSACCHARIDES

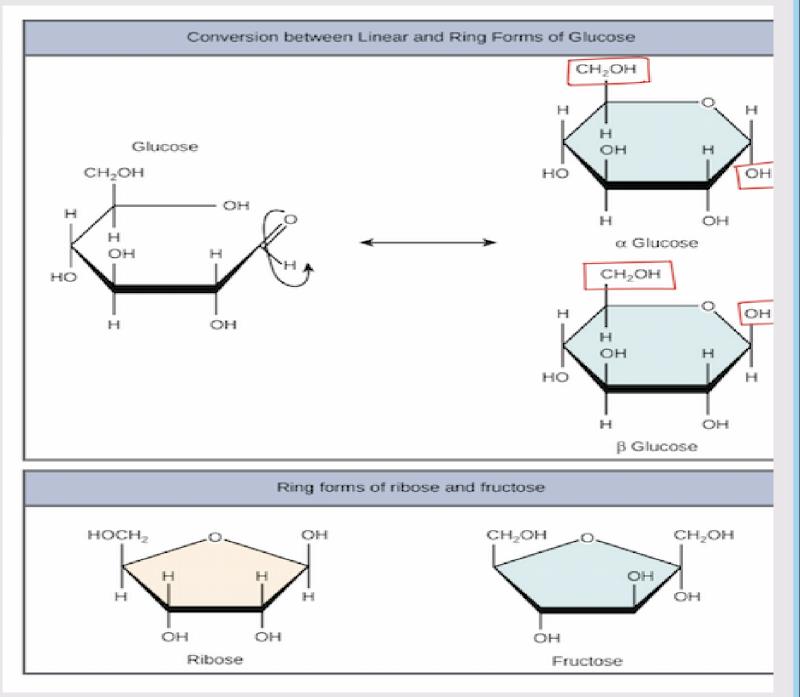


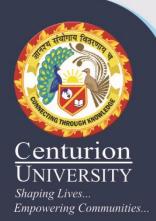
Structure of Glucose

Converting a Fischer Projection to A Haworth Projection

e.g. "convert D-glucose to the cyclic α -pyranose form as a Haworth projection"

D-Glucose (Fischer projection) α -D-Glucopyranose (Haworth projection)


Some "tricks"for converting a Fischer to a Haworth


For C₂, C₃, and C₄ : right side \rightarrow down (e.g. C₂, C₄) left side \rightarrow up (e.g. C₃)

For C₅ : if OH is on right, it's a D-sugar (CH₂OH \rightarrow *up*) For C₁ : the α anomer has OH \rightarrow *down* (for D-sugars) the β anomer has OH \rightarrow *up* (for D-sugars)

Structure of Glucose

Oligosaccharides

- Contain two to ten monosaccharide units joined by glycosidic linkages that can be easily hydrolyzed
- Physiologically important disaccharides are maltose, lactose, sucrose
- Disaccharides consist of two monosaccharides joined covalently by an Oglycosidic bond
- When only one anomeric carbon is involved in glycosidic bond formation, reducing disaccharides are formed
- In case of reducing disaccharides, one end of the molecule having free anomeric carbon is called reducing end and the other end is called non-reducing end