

Department of Applied Chemistry

CHEMICAL KINETICS

<u>Supervisor</u> : Dr. Kriveshini Pillay

<u>Co-Supervisor</u>: Dr. Arjun Maity

Dr. Sushanta Debnath

Dr. Niladri Ballav

PRESENTATION FLOW

KINETICS - BACKGROUND

 To understand & predict behaviour of a chemical system one must consider both Thermodynamics & Kinetics

Thermodynamics: does a reaction takes place???

Kinetics: how fast does a reaction proceed???

Factors to be considered when predicting whether or not a change will take place

RATE OF REACTION

Rate Of Reaction

Change in the concentrations of reactants or products per unit time

Progress of a simple reaction,

Reactant A \longrightarrow Product B

- Concentration of Reactant A
 (purple) decreases with time
- Concentration of Product B
 (Green) increases with time
- Concentrations of A & B are measured at time t₁ & t₂
 respectively A₁, A₂ & B₁, B₂

The graph shows the change in the number of A and B molecules in the reaction as a function of time over a 1 min period (bottom)

Rate with respect to A

Rate =
$$\frac{Change in concentration of A}{change in time} = -\frac{Conc. A_2 - Conc. A_1}{t_2 - t_1} = -\frac{\Delta[A]}{\Delta t}$$

Rate with respect to **B**

Rate = Change in concentration of B change in time =
$$\frac{Conc. B_2 - Conc. B_1}{t_2 - t_1} = \frac{\Delta[B]}{\Delta t}$$

$$Rate = \frac{\Delta[A]}{\Delta t} = \frac{\Delta[B]}{\Delta t} \dots for simpler reactions$$

The (-ve) sign is used because the concentration of A is decreasing.

For complex Reactions

$$aA + bB + cC + \dots \longrightarrow eE + fF + gG + \dots$$

where a, b, c,....e, f, g,.... are stoichiometric coefficients in the balanced Chemical equation & A, B, C,.... E, F, G, are Chemical Species

At const. V

$$Rate = -\frac{1}{a} \frac{\Delta[A]}{\Delta t} = -\frac{1}{b} \frac{\Delta[B]}{\Delta t} = \frac{1}{e} \frac{\Delta[E]}{\Delta t} = \frac{1}{f} \frac{\Delta[F]}{\Delta t}$$

Unit Of Rate

mol L^{-1} s^{-1} for gaseous reactants & products, conc. is usually expressed as partial pressures, so R is atm s^{-1}

Average Rate Of Reaction decreases with time as concentration of reactants decreases

Instantaneous Rate

Change in the concentration of reactants or products at a given instant of time

slope of a tangent line to the curve of a conc. versus time plot

$$Slope = \frac{C_2 - C_1}{t_2 - t_1}$$

Instantaneous Rate =
$$\lim_{t \to 0} = \Delta x/\Delta t = dx/dt$$

Concentration Versus Time Plot

FACTORS AFFECTING THE RATE

Slide 8

Nature Of Reactants

Surface Area Of Reactants

Concentration Of Reactants

Temperature

Catalyst

Nature Of Reactants

- Rate of "Homogeneous Reactions" is higher than the "Heterogeneous Reactions"
- Rate depends on the physical state of reactants, e.g. liquid /gaseous/solid
- Rate depends on the number of collisions or encounters between the reacting species

Surface Area Of Reactants

The same mass of Steel wool bursts into flame

- Heterogeneous reaction occurs at interface of two phases of reactants
- If one reactant is Solid, rate increases with increase in surface area of solid phase reactant
- Surface area increases, area of contact between reactants increases rate of encounter between reactants increases Rate increases
- Surface area of a solid can be increased by Sub-division i.e. dividing the bigger particles in smaller

A Hot Steel nail glows feebly when placed in oxygen

A = ?????

Slide 9

CONCENTRATION & TEMPERATURE

Concentration

- Reacting molecules must Collide with proper Orientation & sufficient Energy
- Above factors increases as conc. increases & hence Rate increases

Temperature

- As T increases avg K.E increases
- As avg. K.E increases, the particles move faster & Collision energy & Collision frequency increases & hence Rate increases

PRESENCE OR ABSENCE OF CATALYST

Catalyst

- A substance that increases the reaction rate without undergoing a chemical change itself
- Provides an alternate reaction mechanism faster than mechanism in absence of catalyst
- Lowers the activation energy for a chemical reaction
- Simple Catalyzed Reaction Scheme:

C is catalyst, R_1 & R_2 reactants, P_1 & P_2 products, I is intermediate

CONCENTRATION & RATE

> A General reaction occurring at a const T

$$aA + bB \longrightarrow cC + dD$$

 \triangleright Acc. to the Law Of Mass Action \longrightarrow Rate Of Reaction α [A]^a [B]^b

Rate Law

: expresses the relation between rate of reaction & concentration of reactants

$$Rate = k[A]^m[B]^n$$

- k is Rate Constant & is a function of T & P (P dependence is small & usually ignored)
- > Reaction has an individual Order with respect to each reactant
- \triangleright Reaction order wrt A = m & wrt B = n; Overall Order of the reaction = m + n

Slide 13

$A \longrightarrow Products$

Reaction Order "n"	Rate variation with Conc.	Differential Rate Law	Integrated Rate Law
1	Rate doubles when [A] doubles	Rate = $k [A]^1$	$\ln \left[A \right]_{t} / \left[A \right]_{o} = -kt$
2	Rate quadruples as [A] doubles	Rate = $k [A]^2$	$1/[\mathbf{A}]_{t} = \mathbf{k}t + 1/[\mathbf{A}]_{o}$
0	Rate does not change with [A]	Rate = k [A] ^o	$[\mathbf{A}]_t - [\mathbf{A}]_0 = -kt$

[A] versus Time plot for 0, 1st & 2nd order rxns

Rate versus [A] plot for 0, 1st, 2nd order rxns

$$2NO(g) + 2H_2(g) \longrightarrow N_2(g) + 2H_2O(g)$$

Rate Law: $k[NO]^2[H_2]$

Order of reaction = 3

1st Order wrt [H₂]
2nd Order wrt [NO]

Stoichiometric coefficient of $[H_2] = 2$ Order with respect to $[H_2] = 1$

Reaction orders must be determined from experimental data and cannot be deduced from the balanced equation

Initial Rate Method

- A series of experiments wherein the concuof one reactant at a time is varied, initial rate R_o at time t_o of the rxn is measured.
- By comparing the conc. change to the Rate change, Order wrt each reactant can be determined

Information sequence to determine the Kinetic parameters of a Reaction

Series of Plot of Concentration versus time

Initial rates
determination by
drawing tangent to
the plot of Conc vs T

Calculation of Reaction order

Rate Constant k & actual rate law

REACTION MECHANISM

Reactions can be divided on the basis of Reaction mechanism

Elementary Reactions

- Only one step reactions
- No Intermediate
- Only One Transition state
- Further divided in Unimolecular, Bimolecular & Termolecular rxn based on Molecularity

Elementary Reaction

Complex Reactions

- Two or more steps
- With Intermediate formation
- Multiple Transition states
- Rate of over all complex rxn is the rate of slowest rxn step (Rate determining Step)

Complex Reaction

MOLECULARITY

Slide 17

Molecularity

Number of colliding molecular entities that are involved in a single reaction step

Molecularity	Lientental y Step	Rute luw	Examples
Unimolecular	A → Products	rate=k [A]	$N_2O_4(g) \rightarrow 2NO_2(g)$
Bimolecular	$\begin{array}{c} A + A \longrightarrow Products \\ A + B \longrightarrow Products \end{array}$	rate=k[A]² rate=k [A][B]	$2NOCl \rightarrow 2NO(g) + CO_2(g)$ $CO(g) + NO_3(g) \rightarrow NO_2(g) + CO_2(g)$
Termolecular	$A + A + A \longrightarrow Products$ $A + A + B \longrightarrow Products$ $A + B + C \longrightarrow Products$	rate=k[A] ³ rate=k [A] ² [B] rate = k [A][B][C]	$2NO(g)+O_2(g)\rightarrow 2NO_2(g)$ $H+O_2(g)+M\rightarrow HO_2(g)+M$

Molecularity

- Number of reacting species which collide to result in reaction
- Only positive integral values e.g 1,2,3 & never -ve
- Theoretical concept & value is derived from mechanism of reaction

Order

- Sum of powers to which concentrations are raised in the rate law expression
- Zero, fractional or even be -ve
- Experimental fact & derived from rate law

Rate Determining Step

Slowest step of a chemical reaction that determines the speed (rate) at which the overall reaction proceeds

Eg: A complex reaction

$$NO_2(g)+CO(g)\rightarrow NO(g)+CO_2(g)$$

occur in two elementary steps:

$$NO_2+NO_2\rightarrow NO+NO_3$$
 (slow) rate const k_1
 $NO_3+CO\rightarrow NO_2+CO_2$ (fast) rate const k_2

Rate= $k_1 [NO_2][NO_2] = k_1 [NO_2]^2$

Slide 19

Collision Model

- Rxns occur when molecules undergo Collisions
- All Collisions are not Effective
- Collisions of molecules with Sufficient Energy are only Effective

Orientation Barrier

Reactants must collide in favourable orientation to make & break bonds E.g. $Cl + NOCl \rightarrow NO + Cl_2$

Effective Collisions

- Collisions which lead to product formation
- Governed by 2 factors:

Energy Barrier

Molecules having energy greater than or equal to threshold energy will only form Product

Explanation for increase in Rate of reaction with temperature by : Energy- distribution Curve at two temperatures T_2 & T_1

Increase in temperature increases the no. of Effective collisions i.e fraction of colliding molecules that have enough energy to exceed E_a increases

- Temperature dependence is expressed by -Arrhenius Equation
- > Rate increases non linearly with temperature as shown in graph, k increases exponentially as T increases:

Arrhenius Equation

$$k = Ae^{-Ea/RT}$$

Taking log

$$ln k = ln A - E_a / RT$$

A = frequency factor

 $E_a = activation$

k = rate constant

energy

Minimum energy required to initiate a chemical reaction

 $Higher T \longrightarrow Larger k \longrightarrow Increases Rate$

Smaller $E_a \longrightarrow Larger k \longrightarrow Increases Rate$

Arrhenius Plot

PSEUDO ORDER REACTIONS

Pseudo Order Reactions

An order of a chemical reaction that appears to be less than the true order due to experimental conditions; when one reactant is in large excess

Pseudo First Order Reactions

Order kinetics can be approximated as **1**st **Order** under certain experimental condition

Pseudo first order kinetics 2^{nd} order rate law = k [A] [B]

- Reduces to Pseudo first order if either [A] or [B] is in large excess
- Pseudo first order rate law = k' [B] where k' = k [A] Pseudo first order rate constant

Pseudo Second Order Reactions

3r^d **Order kinetics** can be approximated as **2**nd **Order** under certain experimental condition

Pseudo Second order kinetics 3^{rd} order rate law = $k [A]^2 [B]$

- Reduces to Pseudo first order, if [A] is in excess Pseudo second order if [B] is in excess
- Pseudo Second order rate law = k' [A]²
 where k' = k [B] Pseudo second
 order rate constant

ADSORPTION KINETICS MODELS

ADSORPTION REACTION MODELS

Pseudo First Order

- Earliest Model ; Proposed by Lagergren (1898) to describe kinetic process of Liq-sol phase adsorption
- **Recent uses**: kinetic study of adsorption of pollutants from waste water

Rate Equation

$$dq_t / dt = k_{pi} (q_e - q_t)$$

Fig 1

• Integrated form of rate eq.

$$log(q_e - q_t) = log q_e - k_{p_1} t / 2.303$$

- Plot of $\log (q_e q_t) \sim t$ should give a linear relationship Lagergren Plot; k_{p_1} & q_e can be determined from slope & intercept of Lagergren Plot
- Fig 1: Lagergren Plot for Cadmium adsorption on Rice husk

Slide 25

Pseudo Second Order

- *Proposed by Ho* (1995)
- To describe kinetic process of adsorption of divalent metal ions on Peat
- Recent Uses: Kinetic study of adsorption process of divalent metal ions, dyes, organic substances from aq. solns

Fig 2

Rate Equation

$$d(P)_{t} / dt = k_{p_{2}} [(P)_{o} - (P)_{t}]^{2}$$

• Integrated form of rate eq.

$$t/q_t = 1/k_{p2}q_e^2 + 1/q_e t$$

- Plot of $t/q_t \sim t$ should give a linear relationship with a slope of $1/q_e$ & intercept of $1/k_{p2} q_e^2$
- Fig 2: Pseudo second order plot for Pb^{2+} ions onto NSSCAC at diff concs.

Slide 26

Elovich's Model

- Proposed by Zeldowitsch (1934) to study kinetics of Chemisorption of gases onto heterogeneous solids
- Recent Uses: kinetics study of removal of pollutants from aq. solns

Elovich Equation

$$dq/dt = ae^{-\alpha q}$$

Fig 3

Integrated form of rate eq.

$$q = \alpha ln (\alpha \alpha) + \alpha lnt$$

- Plot of $q \sim lnt$ should be linear Elovich Plot; slope gives α & intercept gives a
- Fig 3 : Elovich Plot for uptake of Cu(II) from copper solns at two concs 10mg/L & 100mg/L

LIQUID FILM DIFFUSION MODEL

Liquid Film Diffusion Model

2 Rate laws of this model

Linear driving force rate law

$$\delta q / \delta t = k_f S_o(C - C_i)$$

Film Diffusion Mass transfer rate law

$$\ln\left(1-q_t/q_e\right) = -3D_e^{1}t/r_o\Delta r_o k'$$

 Applied to describe mass transfer through liquid film

Fig 4

- Plot of $\ln (1 q_t/q_e) \sim t$ straight line with a slope of $3D^1_e/r_o\Delta r_o k$ if the film diffusion is the rate limiting step
- Recent Uses: Applied to model several liquid / solid adsorption cases e.g. Phenol adsorption by a polyemric adsorbent NDA 100
- Fig 4 : Liquid film diffusion model plot

INTRAPARTICLE DIFFUSION MODEL

Intraparticle Diffusion Model

3 types of Intraparticle diffusion model

Homogeneous Solid diffusion Model

Webber Morris model

Dumwald - Wagner model

Homogeneous Solid diffusion Model

- Describes mass transfer in an amorphous
 & homogeneous sphere
- Recent Uses: Kinetic study of adsorption of salicylic acid & 5-sulfosalicylic acid from aq. solns by hypercrosslinked polymeric adsorbent NDA-99 & NDA 101

HSDM Equation

$$\delta q / \delta t = D_s / r^2 \delta / \delta r (r^2 \delta q / \delta r)$$

D_s = intraparticle diffusion coefficient

r = radial position

Webber Morris model

• Acc to this model: solute uptake varies proportionally with $t^{1/2}$ rather than with contact time t

Webber Morris Equation

$$q_t = k_{int} t^{1/2} + C_i$$

*k*_{int} = intraparticle diffusion rate constant

 $t^{1/2}$ = half life time

C_i = the intercept of the stage i associated with the thickness of the boundary layer.

- Plot of $q_t \sim t^{1/2}$ should be straight line with a slope of k_{int} & intercept $C_i = 0$ when Intraparticle diffusion is the rate limiting step
 - Rate Equation modifies to

$$q_t = k_{int} t^{1/2}$$

• Intercept of above plot gives an idea of thickness of boundary layer i.e. larger the intercept, the greater **Boundary effect**

- Fig 1a: Rate controlling step in Pb2+ adsorption by heat treated (in air) composites: Intraparticle diffusion
- Fig 1b: Plot shows Multilinearity, there are three different linear regions.

Initial linear region is attributed to the film diffusion; governed by boundary layer effect

Second describes the intraparticle diffusion stage

Final gradual uptake is governed by the pore-diffusion mechanism.

Fig: 1a: Webber Morris Intraparticle diffusion model plot of Pb²⁺ adsorption by heat treated (in air) composites

Fig: 1b: Webber Morris Intraparticle diffusion model plot of Pb²⁺ adsorption by coconut shell carbons

Dumwald - Wagner model

Dumwald-Wagner Equation

$$log(1-F^2) = -Kt/2.303$$

Plot of $\log (1 - F^2) \sim t$ should be linear

Recent Uses

Kinetic study of adsorption systems e.g. p –toludine adsorption from aq. solns onto hypercrosslinked polymeric adsorbents

DOUBLE EXPONENTIAL MODEL

Double Exponential Model

- Proposed by Wilezak & Keinath (1993)
- Kinetics of Heavy metals adsorption e.g Pb(II) &Cu(II) from aq. solns
- Two step mechanism:
 - a.) A rapid phase involving external & internal diffusions followed by
 - b.) A slow phase controlled by Intraparticle diffusion

Double Exponential Equation

$$q_t = q_e - D_1/m_a \exp(-K_1 t) - D_2/m_a \exp(-K_2 t)$$

- If $K_1 >> K_2$; Rapid process can be assumed negligible on over all kinetics; then simplified eq.: $q_t = q_e D_2/m_a \exp(-K_2 t)$
- DEM can also describe a process where adsorbent offers 2 different types of adsorption sites: 1.) First type site rapid adsorption
 2.) Second site type slow adsorption

JOHANNESBURG

KINETIC BEST FIT MODEL: INTERPRETATION

Phosphate Sorption Kinetics

Phosphate Removal from aqueous solutions by a nanostructured Fe-Ti bimetal oxide sorbent; Journal of Chemical Engineering Research & Design; *Jianbo Lu*^{a,b,*} *et al*

Regression analysis

R² values compared

Pseudo first order – R^2 = 0.964 Pseudo second order – R^2 = 0.997 Elovich – R^2 = 0.976

Pseudo Second Order Model

Indicated

Chemisorption between adsorbent active sites & phosphate

Good correlation with experimental data

Indicated FTBMO - heterogeneous

Composite Fe-Ti bimetal oxide - Heterogeneous surface

Intraparticle diffusion model plot

Non zero intercept

Indicated

Boundary layer diffusion- Rate limiting step

Correlation coefficient R²

measure of the linear correlation between two variables X and Y

Varies between -1 & +1

1 = positive correlation

0 = No correlation

-1 = Total negative correlation

THANKS

