Experiment no: 7: Experiment on chi -square test and probability

Aim: Solving problems on probability and chi square test

Probability:

Probability is the likelihood of occurrence of an event. In daily life, each one of us is often faced with decision about the likelihood that an event will or will not occur
E.g.: Before commencement of examinations .is student anxious about the likely hood of his doing well in the examinations. The likelihood of obtaining good marks in an examination may be influence by a number of factors
Events: An event is the occurrence of something. The occurrence of head or tail in a toss is an event. Similarly, new born baby being boy or girl is also an event
Formula: $\mathbf{p = 1 / n}$
Q1. A pea plant is heterozygous for 2 genes (TtRRYy) where, $T=T a l l$, $t=d w a r f$, $\mathbf{R}=$ round seed $\mathbf{r}=$ wrinkled seed, $\mathrm{Y}=$ yellow seed, $\mathrm{y}=$ green seed, If this plant is selffertilized what are the predicated phenotypes offspring what fractions of the offspring will occur in each category What fraction of progeny will be tall round and green?

Solution: TtRRYy XTtRRYy

	TRY	TRy	tRY	tRy
TRY	TTRRYY (tall, round, yellow)	TTRRYy (tall, round, yellow)	TtRRYY (tall, round, yellow)	TtRRYy (tall, round, yellow)
TRy	TTRRYy (tall, round, yellow)	TTRRyy(tall, round,green)	TtRRYy (tall, round, yellow)	TtRRyy (tall, round, green)
tRY	TtRRYY (tall, round, yellow)	TtRRYy (tall, round, yellow)	ttRRYY (dwarf, round, yellow)	ttRRYy (dwarf, round, yellow)
tRy	TtRRYy (tall, round, yellow)	TtRRyy (tall, round, green)	ttRRYy (dwarf, round, yellow)	ttRRyy (dwarf, round, green)

tall, round, yellow-9/16
dwarf, round, yellow-3/16
tall, round, green-3/16
dwarf, round, green-1/16
Here, tall, round, green, are $3 / 16$
Fraction of progeny tall, round, green will be $3 / 16$
2. A pea plant is heterozygous for 3 genes (TtRrYy) where, $T=T a l l$, $t=d$ warf, $R=$ round seed $r=$ wrinkled seed, $Y=y e l l o w ~ s e e d, ~ y=$ green seed. If this plant is self-fertilized what
are the predicated phenotypes offspring? What fractions of the offspring will occur in each category?

Solution: By applying alternative forked line method here, predicted phenotypes is $\left(2^{\mathrm{n}}\right)$ i.e. 8 and the fraction of the offspring is as follows

27/64 (tall,	round,	
yellow)	$9 / 64$ (tall, round,	
green)	$9 / 64$	(tall,
wrinkled,	yellow)	$3 / 64$
(tall,	green,	wrinkled)
$9 / 64$	(dwarf,	round,
yellow)	$3 / 64$	(dwarf,
round, green)		
$3 / 64 \quad$ (dwarf,	wrinkled,	
yellow)	$1 / 64$	(dwarf,
wrinkled, green)		

Chi-square:

Q 2. F1 generation, all offspring have straight wings and gray body of drosophila. In \mathbf{F}_{2} generation out of 352 total flies, 193 are straight wing and gray bodies, 69 straight wings, along body, 64 curved wings, gray body 26 curved wings boney body apply chi square test for the given data

Solution:

Given data,
Straight wing gray bodies $=193$
Straight wing ebony bodies $=59$
Curved wing gray bodies $=64$
Curved wing ebony bodies= 26
Total no of files $=352$
Expected values based on the Mendelian law of independent assortment (9:3:3:1) are as follows
Here straight wing gray bodies are dominant over curved wing on ebony bodies respectively
Straight wing gray bodies=9/16 $\times 352=198$
Straight wing ebony bodies
$=3 / 16 \times 352=66$ Curved wing gray
bodies $=3 / 16 \times 352=66$ Curved wing
ebony bodies $=4 / 16 \times 352=22$

Phenotype	Expected data (E)	Observed data (O)	O-E	$(\mathrm{O}-\mathrm{E})^{2}$	χ^{2}
Straight, gray	198	193	-5	25	0.126
Straight, ebony	66	69	3	9	0.136
Curved, gray	66	64	-2	4	0.060
Curved, ebony	22	26	4	16	0.727

TOTAL	352	352			1.049

Hence, the value of $\boldsymbol{\chi} \mathbf{2}$ is $\mathbf{1 . 0 4 9}$

CHI-SQUARE TABLE WITH RESPECTIVE DEGREE OF FREEDOM

Degree of freedom	$\mathrm{P}=0.099$	0.95	0.80	0.50	0.20	$\mathbf{0 . 0 5}$	0.01
1	0.000157	0.00393	0.0642	0.455	1.642	$\mathbf{3 . 8 4 1}$	6.635
2	0.020	0.103	0.446	1.386	3.219	$\mathbf{5 . 9 9 1}$	9.210
$\mathbf{3}$	0.115	0.352	1.005	2.366	4.642	$\mathbf{7 . 8 1 5}$	11.354
4	0.297	0.711	1.649	3.357	5.989	$\mathbf{9 . 4 8 8}$	13.277
5	0.554	1.145	2.343	4.351	7.289	$\mathbf{1 1 . 0 7 0}$	15.086
6	0.872	1.635	3.070	5.348	8.558	$\mathbf{1 2 . 5 9 2}$	16.812
7	1.239	2.167	3.822	6.346	9.803	$\mathbf{1 4 . 0 6 7}$	18.475
8	1.646	2.733	4.595	7.344	11.030	$\mathbf{1 5 . 0 6 7}$	20.090
9	2.088	3.325	5.380	8.343	12.242	$\mathbf{1 6 . 9 1 9}$	21.666
10	2.588	3.940	6.179	9.342	13.442	$\mathbf{1 8 . 9 1 9}$	23.209
15	5.229	7.261	10.307	14.339	19.311	$\mathbf{1 8 . 3 0 7}$	30.578
20	8.260	10.851	14.578	19.337	25.038	$\mathbf{2 4 . 9 9 6}$	37.566
25	1.524	14.611	18.940	24.337	30.675	$\mathbf{3 1 . 4 1 0}$	44.314
30	14.953	18.493	23.304	29.336	36.750	$\mathbf{4 3 . 7 7 3}$	50.892

Here the value of chi -square i.e. 1.049 is less than the table of 7.815 at $\mathbf{0 . 0 5} \mathrm{p}$ and $\mathbf{3}$ degrees of freedom hence, the null hypothesis is accepted.

CLASS WORK

1. Work out of given problem on probability and chi square test.
