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CHEM-UA 652: Thermodynamics and Kinetics

Notes for Lecture 21

I. COMPLEX REACTION MECHANISMS

A major goal in chemical kinetics is to determine the sequence of elementary reactions, or the reaction mechanism, that comprise
complex reactions. For example, Sherwood Rowland and Mario Molina won the Nobel Prize in Chemistry in 1995 for proposing
the elementary reactions involving chlorine radicals that contribute to the overall reaction of O3 → O2 in the troposphere. In
the following sections, we will derive rate laws for complex reaction mechanisms, including reversible, parallel and consecutive
reactions.

A. Parallel reactions

Consider the reaction in which chemical species A undergoes one of two irreversible first order reactions to form either species
B or species C:

A
k1
−→ B

A
k2
−→ C

The overall reaction rate for the consumption of A can be written as:

d[A]

dt
= −k1[A]− k2[A] = −(k1 + k2)[A] (1)

Integrating [A] with respect to t, we obtain the following equation:

[A] = [A]0e
−(k1+k2)t (2)

Plugging this expression into the equation for d[B]
dt

, we obtain:

d[B]

dt
= k1[A] = k1[A]0e

−(k1+k2)t (3)

Integrating [B] with respect to t, we obtain:

[B] = −
k1[A]0
k1 + k2

(

e−(k1+k2)t
)

+ c1 (4)

At t = 0, [B] = 0. Therefore,

c1 =
k1[A]0
k1 + k2

(5)

[B] =
k1[A]0
k1 + k2

(

1− e−(k1+k2)t
)

(6)

Likewise,

[C] =
k2[A]0
k1 + k2

(

1− e−(k1+k2)t
)

(7)

The ratio of [B] to [C] is simply:
[B]

[C]
=

k1
k2

(8)

An important parallel reaction in industry occurs in the production of ethylene oxide, a reagent in many chemical processes
and also a major component in explosives. Ethylene oxide is formed through the partial oxidation of ethylene:

2C2H4 +O2
k1
−→ 2C2H4O

However, ethylene can also undergo a combustion reaction:

C2H4 + 3O2
k2
−→ 2CO2 + 2H2O

To select for the first reaction, the oxidation of ethylene takes place in the presence of a silver catalyst, which significantly
increases k1 compared to k2. Figure 1 displays the concentration profiles for species A, B, and C in a parallel reaction in which
k1 > k2.
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FIG. 1. Plots of [A] (solid line), [B] (dashed line) and [C] (dotted line) over time for a parallel reaction.

B. Consecutive reactions

Consider the following series of first-order irreversible reactions, where species A reacts to form an intermediate species, I,
which then reacts to form the product, P:

A
k1
−→ I

k2
−→ P

We can write the reaction rates of species A, I and P as follows:

d[A]

dt
= −k1[A] (9)

d[I ]

dt
= k1[A]− k2[I ] (10)

d[P ]

dt
= k2[I ] (11)

As before, integrating [A] with respect to t leads to:

[A] = [A]0e
−k1t (12)

The concentration of species I can be written as

[I ] =
k1[A]0
k2 − k1

(

e−k1t
− e−k2t

)

(13)

Then, solving for [P ], we find that:

[P ] = [A]0

[

1 +
1

k1 − k2

(

k2e
−k1t

− k1e
−k2t

)

]

(14)

Figure 2 displays the concentration profiles for species A, B, and C in a consecutive reaction in which k1 = k2. As can be
seen from the figure, the concentration of species I reaches a maximum at some time, tmax. Oftentimes, species I is the desired
product. Returning to the oxidation of ethylene into ethylene oxide, it is important to note another reaction in which ethylene
oxide can decompose into carbon dioxide and water through the following reaction

C2H4O+ 5
2
O2

k3
−→ 2CO2 + 2H2O

Thus, to maximize the concentration of ethylene oxide, the oxidation of ethylene is only allowed proceed to partial completion
before the reaction is stopped.

Finally, in the limiting case when k2 >> k1, we can write the concentration of P as

[P ] ≈ [A]0

{

1 +
1

−k2
k2e

−k1t

}

= [A]0
(

1− e−k1t
)

(15)

Thus, when k2 >> k1, the reaction can be approximated as A → P and the apparent rate law follows 1st order kinetics.
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FIG. 2. Plots of [A] (solid line), [I ] (dashed line) and [P ] (dotted line) over time for consecutive first order reactions.

C. Consecutive reactions with an equilibrium

Consider the reactions

A
k1

−−−⇀↽−−−
k−1

I
k2
−→ P

We can write the reaction rates as:
d[A]

dt
= −k1[A] + k−1[I ] (16)

d[I ]

dt
= k1[A]− k−1[I ]− k2[I ] (17)

d[P ]

dt
= k2[I ] (18)

The exact solutions of these is straightforward, in principle, but rather involved, so we will just state the exact solutions, which
are

[A] (t) =
[A]0
2λ

[

(λ− k1 +K) e−(k1+K−λ)t/2 + (λ+ k1 −K) e−(k1+K+λ)t/2
]

[I] (t) =
k1 [A]0

λ

[

e−(k1+K−λ)t/2
− e−(k1+K+λ)t/2

]

[P] (t) = 2k1k2 [A]0

[

2

(k1 +K)2 − λ2
−

1

λ

(

e−(k1+K−λ)t/2

k1 +K − λ
−

e−(k1+K+λ)t/2

k1 +K + λ

)]

(19)

where

K = k2 + k−1

λ =
√

(k1 −K)2 + 4k1k−1 (20)

D. Steady-state approximations

Consider the following consecutive reaction in which the first step is reversible:

A
k1

−−−⇀↽−−−
k−1

I
k2
−→ P

We can write the reaction rates as:
d[A]

dt
= −k1[A] + k−1[I ] (21)

d[I ]

dt
= k1[A]− k−1[I ]− k2[I ] (22)
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d[P ]

dt
= k2[I ] (23)

These equations can be solved explicitly in terms of [A], [I], and [P], but the math becomes very complicated quickly. If,
however, k2 + k−1 >> k1 (in other words, the rate of consumption of I is much faster than the rate of production of I), we can
make the approximation that the concentration of the intermediate species, I, is small and constant with time:

d[I ]

dt
≈ 0 (24)

Equation 22 can now be written as
d[I ]

dt
= k1[A]− k−1[I ]ss − k2[I ]ss ≈ 0 (25)

where [I ]ss is a constant represents the steady state concentration of intermediate species, I. Solving for [I ]ss,

[I ]ss =
k1

k−1 + k2
[A] (26)

We can then write the rate equation for species A as

d[A]

dt
= −k1[A] + k−1[I ]ss = −k1[A] + k−1

k1
k−1 + k2

[A] = −
k1k2

k−1 + k2
[A] (27)

Integrating,

[A] = [A]0e
−

k1k2
k
−1+k2

t
(28)

Equation 28 is the same equation we would obtain for apparent 1st order kinetics of the following reaction:

A
k′

−→ P

where

k′ =
k1k2

k−1 + k2
(29)

Figure 3 displays the concentration profiles for species, A, I, and P with the condition that k2 + k−1 >> k1. These types of
reaction kinetics appear when the intermediate species, I, is highly reactive.
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FIG. 3. Plots of [A] (solid line), [I ] (dashed line) and [P ] (dotted line) over time for k2 + k−1 >> k1.

E. Lindemann Mechanism

Consider the isomerization of methylisonitrile gas, CH3NC, to acetonitrile gas, CH3CN :

CH3NC
k
−→ CH3CN

If the isomerization is a unimolecular elementary reaction, we should expect to see 1st order rate kinetics. Experimentally,
however, 1st order rate kinetics are only observed at high pressures. At low pressures, the reaction kinetics follows a 2nd order
rate law:

d[CH3NC]

dt
= −k[CH3NC]2 (30)
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To explain this observation, J.A. Chirstiansen and F.A. Lindemann proposed that gas molecules first need to be energized
via intermolecular collisions before undergoing an isomerization reaction. The reaction mechanism can be expressed as the
following two elementary reactions

A +M
k1

−−−⇀↽−−−
k−1

A∗ +M

A∗ k2
−→ B

where M can be a reactant molecule, a product molecule or another inert molecule present in the reactor. Assuming that the
concentration of A∗ is small, or k1 << k2 + k−1, we can use a steady-state approximation to solve for the concentration profile
of species B with time:

d
[A∗]

dt
= k1[A][M ]− k−1[A

∗]ss[M ]− k2[A
∗]ss ≈ 0 (31)

Solving for [A∗],

[A∗] =
k1[M ][A]

k2 + k−1[M ]
(32)

The reaction rates of species A and B can be written as

−
d[A]

dt
=

d[B]

dt
= k2[A

∗] =
k1k2[M ][A]

k2 + k−1[M ]
= kobs[A] (33)

where

kobs =
k1k2[M ]

k2 + k−1[M ]
(34)

At high pressures, we can expect collisions to occur frequently, such that k−1[M ] >> k2. Equation 33 then becomes

−
d[A]

dt
=

k1k2
k−1

[A] (35)

which follows 1st order rate kinetics.

At low pressures, we can expect collisions to occurs infrequently, such that k−1[M ] << k2. In this scenario, equation 33
becomes

−
d[A]

dt
= k1[A][M ] (36)

which follows second order rate kinetics, consistent with experimental observations.

F. Equilibrium approximations

Consider again the following consecutive reaction in which the first step is reversible:

A
k1

−−−⇀↽−−−
k−1

I
k2
−→ P

Now let us consider the situation in which k2 << k1 and k−1. In other words, the conversion of I to P is slow and is the
rate-limiting step. In this situation, we can assume that [A] and [I] are in equilibrium with each other. As we derived before
for a reversible reaction in equilibrium,

Keq =
k1
k−1

≈
[I ]

[A]
(37)

or, in terms of [I],

[I ] = Keq [A] (38)



6

These conditions also result from the exact solution when we set k2 ≈ 0. When this is done, we have the approximate expressions
from the exact solution:

K ≈ k−1

λ ≈

√

(k1 − k−1)2 + 4k1k−1 =
√

k2
1 + 2k1k−1 + k2

−1 = k1 + k−1

λ− k1 +K ≈ k1 + k−1 + k1 − k−1 = 2k1

λ+ k1 −K ≈ k1 + k−1 + k1 − k−1 = 2k1

k1 +K − λ ≈ k1 + k−1 − k1 − k−1 = 0

k1 +K + λ ≈ k1 + k−1 + k1 + k−1 = 2 (k1 + k−1) (39)

and the approximate solutions become

[A] (t) =
[A]0

2(k1 + k−1)

[

2k−1 + 2k1e
−(k1+k−1)t

]

[I] (t) =
k1 [A]0

(k1 + k−1)

[

1− e−(k1+k−1)t
]

(40)

In the long-time limit, when equilibrium is reached and transient behavior has decayed away, we find

[I]

[A]
≡ Keq →

k1
k−1

(41)

Plugging the above equation into the expression for d[P ]/dt,

d[P ]

dt
= k2[I ] = k2Keq[A] =

k1k2
k−1

[A] (42)

The reaction can thus be approximated as a 1st order reaction

A
k′

−→ P

with

k′ =
k1k2
k−1

(43)

Figure 4 displays the concentration profiles for species, A, I, and P with the condition that k2 << k1 = k−1. When k1 = k−1,
we expect [A] = [I ]. As can be seen from the figure, after a short initial startup time, the concentrations of species A and B
are approximately equal during the reaction.
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FIG. 4. Plots of [A] (solid line), [I ] (dashed line) and [P ] (dotted line) over time for k2 << k1 = k−1.


