

HAMMING CODE

IARISH CHANDRA MOHANTA, CUTM, BHUBANESWAR CAMPU

INTRODUCTION

- A code is said to be linear if any two code words in the code can be added in modulo-2 arithmetic to produce a third codeword in the code.
- A codeword is divided into two parts, one of which occupied by the message bits and other by the parity bits.
- For an (n, k) linear block code, k bits of the n bits are message bits and n-k bits are parity bits.

b ₀ , b ₁ , b ₂ ,, b _{n-k-1} m ₀ ,	m ₁ , m ₂ ,, m _{k-1}
(parity bits)	(message bits)

Structure of codeword

HAMMING DISTANCE AND HAMMING WEIGHT

- Consider a pair of code vectors c_1 and c_2 that have the same number of elements.
- The Hamming distance d(c₁, c₂) between such a pair of code vectors is defined as the number of locations in which their respective elements differ.
- The Hamming weight w(c) of a code vector c is defined as the number of nonzero elements in the code vector. We may state that the Hamming weight of a code vector is the distance between the code vector and the all-zero code vector.
- The minimum distance d_{min} of a linear block code is defined as the smallest Hamming distance between any pair of code vectors in the code.
- We may state that the minimum distance of a linear block code is the smallest Hamming weight of the nonzero code vectors in the code.

HAMMING CODES

- Hamming code is a set of error-correction codes that can be used to detect and correct the errors that can occur when the data is moved or stored from the transmitter to the receiver.
- This technique was developed by **R.W. Hamming** for error correction.
- Parity bits are extra binary bits that are generated and added to the information-carrying (message) bits of data transfer to ensure that no bits were lost during the data transfer.
- The number of parity bits can be calculated using the following formula:

Where p is the no. of parity bits and m is the no. of message bits $2^p \ge p + m + 1$

Here, P≥3, block length=n=2^p-1, no. of message bits=m=k=2^p-p-1, no. of parity bits=p=n-k for block code of (n, k).

HAMMING CODES

- Hamming codes are single-error correcting binary perfect codes.
- No. of parity bits calculation formula

$$\textbf{2}^{\textbf{P}} \hspace{0.1in} \geq p+m+1$$

Where p is the no. of parity bits and m is the no. of message bits

- All bit positions that are power of 2 are marked as parity bits (1, 2, 4, 8,...., 2ⁿ), other bits are message bits.
- So block code C(7,4) means total no. of bits in the codeword is 7. The no. of message bits=4 and no. of parity bits=7-4=3. message=m₁m₂m₃m₄ and parity bits are p₁, p₂, p₃.
- Hamming code format is p₁ p₂ m₁ p₃ m₂ m₃ m₄.
- Bit positions are 1, 2, 3, 4, 5, 6, 7.

GENERATION OF HAMMING CODE

- Generate the hamming code for the message 1110.
- Here, message bits=m=4.
- To calculate no. of parity bits p, we have to use the formula $2^{p} \ge p + m + 1$
- To satisfy above condition, the minimum value of p is 3. So, the no. of parity bits=p=3
- Parity bits are p₁, p₂, p_{3.}
- Hamming code is $p_1 p_2 m_1 p_3 m_2 m_3 m_4$. i.e. $p_1 p_2 1 p_3 1 1 0$.
- Now we have to find the value of parity bits i.e. p_1 value, p_2 value and p_3 value.
- p₁ value, p₂ value and p₃ value must satisfy even parity or odd parity.

HAMMING CODE GENERATION

- $P_1 \rightarrow 1, 3, 5, 7 \rightarrow P_1 \ 1 \ 1, 0$. To make even parity $P_1=0$. Because for even parity, the total of 1's present must be even.
- $P_2 \rightarrow 2, 3, 6, 7 \rightarrow P_2$ 11 0. To make even parity $P_2=0$. Because for even parity, the total of 1's present must be even.
- $P_3 \rightarrow 4, 5, 6, 7 \rightarrow P_3$ 11 0. To make even parity $P_3=0$. Because for even parity, the total of 1's present must be even.
- So, all parity bits are 0.
- Hence, Hamming code is 0 0 1 0 1 1 0 for even parity transmission.
- For odd parity transmission , Hamming code is 1111110.
- Since 3 parity bits are there, so total combination values, we have 000, 001, 010, 011, 100, 101, 110, 111.
- For P_1 , we have taken which have 1 in 1st place in above combinations i.e. 1, 3, 5, 7.
- For P_2 , we have taken which have 1 in 2^{nd} place in above combinations i.e. 2, 3, 6, 7.
- For P_3 , we have taken which have 1 in 3^{rd} place in above combinations i.e. 4, 5, 6, 7.

ERROR CORRECTION IN HAMMING CODING

C(7,4) hamming code is received as 1010111. Determine the correct code when even parity is there.

Here, no. message bits=4, no. of parity bits=7-4=3.

- Error place depends on the no. of parity bits. So , here error place= $E_3 E_2 E_1$.
- $E_1 \rightarrow 1, 3, 5, 7 \rightarrow 1 \ 1 \ 1 \ 1$, To make even parity, here $E_1=0$, as four 1's are present.
- $E_2 \rightarrow 2, 3, 6, 7 \rightarrow 0 \ 1 \ 1 \ 1$, To make even parity, here $E_2=1$, as three 1's are present.
- $E_3 \rightarrow 4, 5, 6, 7 \rightarrow 0 \ 1 \ 1 \ 1$, To make even parity, here $E_2=1$, as three 1's are present.

CORRECT HAMMING CODE

- Here, error place can be defined as $E_3 E_2 E_1$ i.e. 1 1 0 whose decimal equivalent is 6.
- So, in 6th bit there is an error. Since '1' is received in 6th bit, the corrected bit value in 6th bit is 0.
- Hence, the corrected Hamming code is 1 0 1 0 1 0 1.

THANK YOU