Drying and Dehydration of Fruits and Vegetables

Rakesh Singh
Department of Food Science and Technology
The University of Georgia
Athens, GA, USA
Drying (Dehydration)

- One of the oldest methods of preserving food
- Removes moisture stops the growth of bacteria, yeasts & molds that normally spoil food
- Slows down but doesn’t completely inactivate enzymes
Drying Techniques

- Sun or solar drying
- Freeze drying
- Drum drying
- Spray drying
- Foam mat and vacuum belt
- Convection air & Superheated steam (tray, tunnel)
- Osmotic drying
- Microwave
Drying Techniques (continued)

- Combination of different techniques
- Vacuum- osmotic
- Osmotic – microwave
- Ultrasound pre-treatment followed by drying
- Fluidized bed
- Pulse combustion
- Jet zone or impingement
Drying Foods Outdoors

• Sun Drying
 – Fruits safe to dry due to high acid and sugar content
 – Vegetables should not be dried outside
 • They need constant temperature & airflow
 – Temperature of 30 C or higher for several days with humidity below 60%
 – Cover to protect against insects/pests
Drying Outside, continued

- **Solar Drying**
 - Need to construct a dryer with panel(s)
 - Need to stir and turn food several times a day
 - Need several days of sun in a row

- **Vine Drying**
 - Beans & Lentils
Room Temperature Drying

Method used mainly for herbs & hot peppers

» Strung on string or tied in bundles and suspended from overhead racks in air until dry

OR

» Enclosed in paper bags with openings for air circulation

» Herbs can also be dried in the microwave oven
Temperatures for Drying

• The ideal temperature for drying or dehydrating foods is 60-70 °C
 – If higher temperatures are used, food cooks instead of dries

• Avoid “case hardening”
 – dried on outside but moisture trapped inside allowing mold growth

• Temperature close to glass transition gives better products
Drying Rates

Figure 1. Typical Drying Curve

Figure 1. During processing, drying occurs in three different periods, or phases, which can be clearly defined.
Factors affecting drying

- Temperature
- Humidity
- Air velocity
- Direction of air flow
- Type of dryer
- Type and size of food

(very difficult to remove last 2% of moisture)
The Process

• Prepare the fruit: wash, core and peel if desired
• Fruits can be halved or sliced and some left whole
• Thin, uniform, peeled slices dry fastest
• If fruit is whole, “check” or crack the skin to speed drying
Pre-treatment

Some fruits need to have their enzymes inactivated before drying, especially those that oxidize when exposed to air (e.g. bananas, apples, pears)

- Ascorbic Acid
- Fruit juice dip
- Honey dip
- Syrup blanching
- Commercial acids
Tunnel Dryer

Tray Dryer
Hot Air Drying

Carrots

Blueberries
Vacuum Belt Drying Of Blueberries
Solar Tray Dryer

- Air outlet opening (with protective net cover)
- Heated air out
- Insulated drying chamber
- Polyethylene cover
- Bottom of solar collector (black painted)
- Solar panel (photovoltaic cell)
- Fan (solar panel driven)
- Air inlet (with protective net cover)
Technical Data for Fruit Dehydration in Tunnels

<table>
<thead>
<tr>
<th>Fruits</th>
<th>Drying Conditions</th>
<th>Finished Product</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Load kg/m²</td>
<td>Temperature °C</td>
</tr>
<tr>
<td>Plums</td>
<td>15</td>
<td>I. 40-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>II. 75-80</td>
</tr>
<tr>
<td>Apples (Rings)</td>
<td>10</td>
<td>75-55</td>
</tr>
<tr>
<td>Apricots (Halves)</td>
<td>10</td>
<td>70-60</td>
</tr>
<tr>
<td>Cherries (w. stones)</td>
<td>10</td>
<td>55-70</td>
</tr>
<tr>
<td>Pears (Halves and quarters)</td>
<td>15</td>
<td>70-65</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>70-60</td>
</tr>
</tbody>
</table>

FAO 1990
Technical Data on some Osmotically Dehydrated Products

<table>
<thead>
<tr>
<th>Fruit or vegetable</th>
<th>Type of cut</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Banana</td>
<td>5 mm slices</td>
<td>2 hours, 80% sugar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 ppm SO2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>at 70 C</td>
</tr>
<tr>
<td>Carrots</td>
<td>10 x 10 x 2 mm dices or 5 mm slices</td>
<td>4 hours, 60% sugar + 10% salt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4000 ppm SO2</td>
</tr>
<tr>
<td>Mango, green</td>
<td>8 mm slices</td>
<td>2 hours, 25% salt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8000 ppm SO2</td>
</tr>
<tr>
<td>Mango, ripe</td>
<td>8 mm slices</td>
<td>2 hours, 60% sugar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8000 ppm SO2</td>
</tr>
<tr>
<td>Onions</td>
<td>2 mm slices</td>
<td>2 hours, 60% sugar + 10% salt</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4000 ppm SO2</td>
</tr>
<tr>
<td>Papaya</td>
<td>8 x 8 mm slices</td>
<td>4 hours, 80% sugar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000 ppm SO2 at 70 C</td>
</tr>
<tr>
<td>Strawberries</td>
<td>Whole</td>
<td>4 hours, 80% sugar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4000 ppm SO2</td>
</tr>
<tr>
<td>Sweet peppers, red</td>
<td>6 mm dices</td>
<td>2 hours, 60% sugar + 10% salt</td>
</tr>
</tbody>
</table>
Arranging Fruit for Drying

• Do not over fill
 – Leave room for air circulation
• Lay as flat as possible
• Dry similar fruits together
 – Avoid mixing strong odors
Determining Dryness of Fruit

• Drying fruit can take anywhere from 6 hours for thin or small pieces or 10-12 hours for larger juicy fruits such as peach or apricot halves

• Dried fruit will feel leathery; won’t stick to itself

• Cut fruit should have no visible moisture inside though it may be soft
After Drying Fruit…

• Cool fruit 30-60 minutes before packaging
• Don’t pack too soon or moisture buildup could occur
• Don’t wait too long or the fruit could pick up moisture from the air
Conditioning Fruit...

• Conditioning is used to equalize moisture
 ❖ Pack cooled fruit in plastic bag or glass jar
 ❖ Seal and let stand for 7-10 days
 ❖ Shake jars daily to separate pieces and check for moisture (condensation on sides of bag/jar)
 ❖ If there is condensation, return fruit to dehydrator for more drying or place in freezer

• There is a chance mold will have already started growing in too-moist fruit; discard if you find mold
Fruit Bars

Main raw material quantities to prepare approximately 100 kg of fruit bars are as follows:

<table>
<thead>
<tr>
<th>Type of fruit</th>
<th>Fruit required, kg</th>
<th>Pulp obtained, kg</th>
<th>Sugar required, kg</th>
<th>Yield (% of fresh fruit) approx.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mango</td>
<td>720</td>
<td>360</td>
<td>33</td>
<td>14</td>
</tr>
<tr>
<td>Banana</td>
<td>600</td>
<td>360</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>Guava</td>
<td>406</td>
<td>325</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>Mango + banana</td>
<td>540 + 150</td>
<td>360</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>Papaya + banana</td>
<td>500 + 140</td>
<td>336</td>
<td>54</td>
<td>23</td>
</tr>
</tbody>
</table>

Source: Amoriggi (1992), FAO (1990)
Fruit Leathers

• Made from pureed fruit
 ▪ Can use fresh/frozen fruit or canned fruit

• May add sugar, honey, or lemon juice for flavor and color retention

• May add coconut or nuts

• Dry on special drying tray that comes with dehydrator

• Dry until pliable; no wet spots; not crispy
Drying Vegetables

• Prepare the vegetables
 - Wash, trim, and peel
 - Cut uniform pieces or leave whole
 - Dry as soon as possible after harvesting
Pre-treating Vegetables

• Water blanching
 – Follow recommended times
 – Do not over-fill basket or pan
 – Start timing when water returns to boil after placing vegetables in basket

• Steam blanching
 – Place in basket above boiling water (no more than 2 inches higher)
 – Cover pan/pot and begin timing
Cooling Vegetables

- Dip briefly in cold water only long enough to stop cooking
- Cool until they are only slightly hot to touch—about 120 °F
- Wipe and spread vegetables out on racks for drying
Determining Dryness of Vegetables

- Dry vegetables until brittle or “crisp”
- Some vegetables shatter if hit hard
- Low moisture (10%)
- Cool, place in bags or jars and seal
 - Should store up to 1 year if in a cool dark place in jars with air-tight
Nutritional Value of Dried Foods

Fresh produce provides calories, fiber, minerals and vitamins. Changes that can be expected in home-dried food are:

• Calories: No change
• Fiber: No change
• Minerals: Minimal loss
• Vitamins: Greater loss during dehydration process (more susceptible to heat, air and light)
Yields

• Because drying removes moisture, the food shrinks and decreases in size and weight
• When water is added to the dried product, it returns close to its original size

\[
\begin{align*}
25 \text{ lbs. apples} & = 4 \text{ lbs. dried} \\
25 \text{ lbs. onions} & = 3 \text{ lbs. dried}
\end{align*}
\]
References

• “So Easy to Preserve”- University of Georgia
• Drying Food, University of Illinois Extension
• Food Preservation: Dehydration- New Mexico State University
• Home Drying of Food, Utah State University Extension

Download:

• FAO Document, 1990