
Chapter 2

Database System

Concepts and

Architecture

Slide 2-2

Data Models

 Data Model: A set of concepts to describe the

structure of a database, and certain constraints

that the database should obey.

 Data Model Operations: Operations for

specifying database retrievals and updates by

referring to the concepts of the data model.

Operations on the data model may include basic

operations and user-defined operations.

Slide 2-3

Categories of data models

 Conceptual (high-level, semantic) data models:
Provide concepts that are close to the way many
users perceive data. (Also called entity-based or
object-based data models.)

 Physical (low-level, internal) data models:
Provide concepts that describe details of how data
is stored in the computer.

 Implementation (representational) data models:
Provide concepts that fall between the above two,
balancing user views with some computer storage
details.

Slide 2-4

History of Data Models
 Relational Model: proposed in 1970 by E.F. Codd (IBM),

first commercial system in 1981-82. Now in several
commercial products (DB2, ORACLE, SQL Server,
SYBASE, INFORMIX).
Network Model: the first one to be implemented by
Honeywell in 1964-65 (IDS System). Adopted heavily
due to the support by CODASYL (CODASYL - DBTG
report of 1971). Later implemented in a large variety of
systems - IDMS (Cullinet - now CA), DMS 1100 (Unisys),
IMAGE (H.P.), VAX -DBMS (Digital Equipment Corp.).

 Hierarchical Data Model: implemented in a joint effort by
IBM and North American Rockwell around 1965. Resulted
in the IMS family of systems. The most popular model.
Other system based on this model: System 2k (SAS inc.)

Slide 2-5

History of Data Models

 Object-oriented Data Model(s): several models have been

proposed for implementing in a database system. One set

comprises models of persistent O-O Programming

Languages such as C++ (e.g., in OBJECTSTORE or

VERSANT), and Smalltalk (e.g., in GEMSTONE).

Additionally, systems like O2, ORION (at MCC - then

ITASCA), IRIS (at H.P.- used in Open OODB).

 Object-Relational Models: Most Recent Trend. Started

with Informix Universal Server. Exemplified in the latest

versions of Oracle-10i, DB2, and SQL Server etc. systems.

Slide 2-6

Hierarchical Model

• ADVANTAGES:

• Hierarchical Model is simple to construct and operate on

• Corresponds to a number of natural hierarchically organized
domains - e.g., assemblies in manufacturing, personnel
organization in companies

• Language is simple; uses constructs like GET, GET
UNIQUE, GET NEXT, GET NEXT WITHIN PARENT etc.

• DISADVANTAGES:

• Navigational and procedural nature of processing

• Database is visualized as a linear arrangement of records

• Little scope for "query optimization"

Slide 2-7

Network Model
• ADVANTAGES:

• Network Model is able to model complex relationships and
represents semantics of add/delete on the relationships.

• Can handle most situations for modeling using record types
and relationship types.

• Language is navigational; uses constructs like FIND, FIND
member, FIND owner, FIND NEXT within set, GET etc.
Programmers can do optimal navigation through the database.

• DISADVANTAGES:

• Navigational and procedural nature of processing

• Database contains a complex array of pointers that thread
through a set of records.
Little scope for automated "query optimization”

Slide 2-8

Schemas versus Instances

• Database Schema: The description of a database.
Includes descriptions of the database structure and
the constraints that should hold on the database.

• Schema Diagram: A diagrammatic display of
(some aspects of) a database schema.

• Schema Construct: A component of the schema
or an object within the schema, e.g., STUDENT,
COURSE.

• Database Instance: The actual data stored in a
database at a particular moment in time. Also
called database state (or occurrence).

Slide 2-9

Database Schema Vs.

Database State
• Database State: Refers to the content of a database

at a moment in time.

• Initial Database State: Refers to the database when
it is loaded

• Valid State: A state that satisfies the structure and
constraints of the database.

• Distinction

• The database schema changes very infrequently. The
database state changes every time the database is updated.

• Schema is also called intension, whereas state is called
extension.

Slide 2-10

Three-Schema Architecture

• Proposed to support DBMS characteristics

of:

• Program-data independence.

• Support of multiple views of the data.

Slide 2-11

Three-Schema Architecture

• Defines DBMS schemas at three levels:

• Internal schema at the internal level to describe
physical storage structures and access paths. Typically
uses a physical data model.

• Conceptual schema at the conceptual level to describe
the structure and constraints for the whole database for
a community of users. Uses a conceptual or an
implementation data model.

• External schemas at the external level to describe the
various user views. Usually uses the same data model
as the conceptual level.

Slide 2-12

Three-Schema Architecture

Mappings among schema levels are needed

to transform requests and data. Programs

refer to an external schema, and are mapped

by the DBMS to the internal schema for

execution.

Slide 2-13

Data Independence

• Logical Data Independence: The capacity

to change the conceptual schema without

having to change the external schemas and

their application programs.

• Physical Data Independence: The capacity

to change the internal schema without

having to change the conceptual schema.

Slide 2-14

Data Independence

When a schema at a lower level is changed,

only the mappings between this schema

and higher-level schemas need to be

changed in a DBMS that fully supports data

independence. The higher-level schemas

themselves are unchanged. Hence, the

application programs need not be changed

since they refer to the external schemas.

Slide 2-15

DBMS Languages

• Data Definition Language (DDL): Used by the

DBA and database designers to specify the

conceptual schema of a database. In many

DBMSs, the DDL is also used to define internal

and external schemas (views). In some DBMSs,

separate storage definition language (SDL) and

view definition language (VDL) are used to

define internal and external schemas.

Slide 2-16

DBMS Languages

• Data Manipulation Language (DML):
Used to specify database retrievals and
updates.

• DML commands (data sublanguage) can be
embedded in a general-purpose programming
language (host language), such as COBOL, C
or an Assembly Language.

• Alternatively, stand-alone DML commands can
be applied directly (query language).

Slide 2-17

DBMS Languages

• High Level or Non-procedural

Languages: e.g., SQL, are set-oriented and

specify what data to retrieve than how to

retrieve. Also called declarative languages.

• Low Level or Procedural Languages:

record-at-a-time; they specify how to

retrieve data and include constructs such as

looping.

Slide 2-18

DBMS Interfaces

• Stand-alone query language interfaces.

• Programmer interfaces for embedding DML in
programming languages:

• Pre-compiler Approach

• Procedure (Subroutine) Call Approach

• User-friendly interfaces:

• Menu-based, popular for browsing on the web

• Forms-based, designed for naïve users

• Graphics-based (Point and Click, Drag and Drop etc.)

• Natural language: requests in written English

• Combinations of the above

Slide 2-19

Other DBMS Interfaces

• Speech as Input (?) and Output

• Web Browser as an interface

• Parametric interfaces (e.g., bank tellers) using

function keys.

• Interfaces for the DBA:

• Creating accounts, granting authorizations

• Setting system parameters

• Changing schemas or access path

Slide 2-20

Database System Utilities

• To perform certain functions such as:

• Loading data stored in files into a database. Includes

data conversion tools.

• Backing up the database periodically on tape.

• Reorganizing database file structures.

• Report generation utilities.

• Performance monitoring utilities.

• Other functions, such as sorting, user monitoring, data

compression, etc.

Slide 2-21

Other Tools

• Data dictionary / repository:
• Used to store schema descriptions and other information such

as design decisions, application program descriptions, user

information, usage standards, etc.

• Active data dictionary is accessed by DBMS software and

users/DBA.

• Passive data dictionary is accessed by users/DBA only.

• Application Development Environments and CASE

(computer-aided software engineering) tools:

• Examples – Power builder (Sybase), Builder (Borland)

Slide 2-22

Centralized and Client-Server

Architectures

• Centralized DBMS: combines everything

into single system including- DBMS

software, hardware, application programs

and user interface processing software.

Slide 2-23

Basic Client-Server

Architectures

• Specialized Servers with Specialized

functions

• Clients

• DBMS Server

Slide 2-24

Specialized Servers with

Specialized functions:

• File Servers

• Printer Servers

• Web Servers

• E-mail Servers

Slide 2-25

Clients:

• Provide appropriate interfaces and a client-version
of the system to access and utilize the server
resources.

• Clients maybe diskless machines or PCs or
Workstations with disks with only the client
software installed.

• Connected to the servers via some form of a
network.

(LAN: local area network, wireless network,
etc.)

Slide 2-26

DBMS Server

• Provides database query and transaction

services to the clients

• Sometimes called query and transaction

servers

Slide 2-27

Two Tier Client-Server

Architecture

• User Interface Programs and Application

Programs run on the client side

• Interface called ODBC (Open Database

Connectivity – see Ch 9) provides an

Application program interface (API) allow

client side programs to call the DBMS.

Most DBMS vendors provide ODBC

drivers.

Slide 2-28

Two Tier Client-Server

Architecture
• A client program may connect to several DBMSs.

• Other variations of clients are possible: e.g., in

some DBMSs, more functionality is transferred to

clients including data dictionary functions,

optimization and recovery across multiple servers,

etc. In such situations the server may be called the

Data Server.

Slide 2-29

Three Tier Client-Server

Architecture
• Common for Web applications

• Intermediate Layer called Application Server or
Web Server:

• stores the web connectivity software and the rules and
business logic (constraints) part of the application used to
access the right amount of data from the database server

• acts like a conduit for sending partially processed data
between the database server and the client.

• Additional Features- Security:

• encrypt the data at the server before transmission

• decrypt data at the client

Slide 2-30

Classification of DBMSs

• Based on the data model used:

• Traditional: Relational, Network, Hierarchical.

• Emerging: Object-oriented, Object-relational.

• Other classifications:

• Single-user (typically used with micro-
computers) vs. multi-user (most DBMSs).

• Centralized (uses a single computer with one
database) vs. distributed (uses multiple
computers, multiple databases)

Slide 2-31

Classification of DBMSs

Distributed Database Systems have now

come to be known as client server based

database systems because they do not

support a totally distributed environment,

but rather a set of database servers

supporting a set of clients.

Slide 2-32

Variations of Distributed

Environments:

• Homogeneous DDBMS

• Heterogeneous DDBMS

• Federated or Multidatabase Systems

