
Chapter 10

Functional Dependencies and

Normalization for Relational

Databases

Chapter 10-2

Chapter Outline

1 Informal Design Guidelines for Relational Databases

1.1Semantics of the Relation Attributes

1.2 Redundant Information in Tuples and Update Anomalies

1.3 Null Values in Tuples

1.4 Spurious Tuples

2 Functional Dependencies (FDs)

2.1 Definition of FD

2.2 Inference Rules for FDs

2.3 Equivalence of Sets of FDs

2.4 Minimal Sets of FDs

Chapter 10-3

Chapter Outline(contd.)

3 Normal Forms Based on Primary Keys
3.1 Normalization of Relations

3.2 Practical Use of Normal Forms

3.3 Definitions of Keys and Attributes Participating in Keys

3.4 First Normal Form

3.5 Second Normal Form

3.6 Third Normal Form

4 General Normal Form Definitions (For Multiple

Keys)

5 BCNF (Boyce-Codd Normal Form)

Chapter 10-4

1 Informal Design Guidelines for

Relational Databases (1)

What is relational database design?

The grouping of attributes to form "good" relation schemas

 Two levels of relation schemas

– The logical "user view" level

– The storage "base relation" level

 Design is concerned mainly with base relations

 What are the criteria for "good" base relations?

Chapter 10-5

Informal Design Guidelines for

Relational Databases (2)

We first discuss informal guidelines for good
relational design

 Then we discuss formal concepts of functional
dependencies and normal forms
- 1NF (First Normal Form)

- 2NF (Second Normal Form)

- 3NF (Third Normal Form)

- BCNF (Boyce-Codd Normal Form)

 Additional types of dependencies, further normal
forms, relational design algorithms by synthesis
are discussed in Chapter 11

Chapter 10-6

1.1 Semantics of the Relation

Attributes
GUIDELINE 1: Informally, each tuple in a relation

should represent one entity or relationship
instance. (Applies to individual relations and their
attributes).

 Attributes of different entities (EMPLOYEEs, DEPARTMENTs,
PROJECTs) should not be mixed in the same relation

 Only foreign keys should be used to refer to other entities

 Entity and relationship attributes should be kept apart as much as
possible.

Bottom Line: Design a schema that can be explained
easily relation by relation. The semantics of
attributes should be easy to interpret.

Chapter 10-7

Figure 10.1 A simplified COMPANY

relational database schema

Note: The above figure is now called Figure 10.1 in Edition 4

Chapter 10-8

1.2 Redundant Information in

Tuples and Update Anomalies

Mixing attributes of multiple entities may cause

problems

 Information is stored redundantly wasting storage

 Problems with update anomalies

– Insertion anomalies

– Deletion anomalies

– Modification anomalies

Chapter 10-9

EXAMPLE OF AN UPDATE

ANOMALY (1)

Consider the relation:

EMP_PROJ (Emp#, Proj#, Ename, Pname, No_hours)

 Update Anomaly: Changing the name of project

number P1 from ―Billing‖ to ―Customer-

Accounting‖ may cause this update to be made for

all 100 employees working on project P1.

Chapter 10-10

EXAMPLE OF AN UPDATE

ANOMALY (2)

 Insert Anomaly: Cannot insert a project unless

an employee is assigned to .

Inversely - Cannot insert an employee unless an

he/she is assigned to a project.

 Delete Anomaly: When a project is deleted, it

will result in deleting all the employees who work

on that project. Alternately, if an employee is the

sole employee on a project, deleting that employee

would result in deleting the corresponding project.

Chapter 10-11

Figure 10.3 Two relation schemas

suffering from update anomalies

Note: The above figure is now called Figure 10.3 in Edition 4

Chapter 10-12

Figure 10.4 Example States for EMP_DEPT

and EMP_PROJ

Note: The above figure is now called Figure 10.4 in Edition 4

Chapter 10-13

Guideline to Redundant Information

in Tuples and Update Anomalies

GUIDELINE 2: Design a schema that does not

suffer from the insertion, deletion and update

anomalies. If there are any present, then note them

so that applications can be made to take them into

account

Chapter 10-14

1.3 Null Values in Tuples

GUIDELINE 3: Relations should be designed such
that their tuples will have as few NULL values as
possible

 Attributes that are NULL frequently could be
placed in separate relations (with the primary key)

 Reasons for nulls:

– attribute not applicable or invalid

– attribute value unknown (may exist)

– value known to exist, but unavailable

Chapter 10-15

1.4 Spurious Tuples

 Bad designs for a relational database may result in
erroneous results for certain JOIN operations

 The "lossless join" property is used to guarantee
meaningful results for join operations

GUIDELINE 4: The relations should be designed to
satisfy the lossless join condition. No spurious
tuples should be generated by doing a natural-join
of any relations.

Chapter 10-16

Spurious Tuples (2)

There are two important properties of decompositions:

(a) non-additive or losslessness of the corresponding

join

(b) preservation of the functional dependencies.

Note that property (a) is extremely important and

cannot be sacrificed. Property (b) is less stringent

and may be sacrificed. (See Chapter 11).

Chapter 10-17

2.1 Functional Dependencies (1)

 Functional dependencies (FDs) are used to specify
formal measures of the "goodness" of relational
designs

 FDs and keys are used to define normal forms for
relations

 FDs are constraints that are derived from the
meaning and interrelationships of the data
attributes

 A set of attributes X functionally determines a set
of attributes Y if the value of X determines a
unique value for Y

Chapter 10-18

Functional Dependencies (2)

 X -> Y holds if whenever two tuples have the same value

for X, they must have the same value for Y

 For any two tuples t1 and t2 in any relation instance r(R):

If t1[X]=t2[X], then t1[Y]=t2[Y]

 X -> Y in R specifies a constraint on all relation instances

r(R)

 Written as X -> Y; can be displayed graphically on a

relation schema as in Figures. (denoted by the arrow:).

 FDs are derived from the real-world constraints on the

attributes

Chapter 10-19

Examples of FD constraints (1)

 social security number determines employee name

SSN -> ENAME

 project number determines project name and
location

PNUMBER -> {PNAME, PLOCATION}

 employee ssn and project number determines the
hours per week that the employee works on the
project

{SSN, PNUMBER} -> HOURS

Chapter 10-20

Examples of FD constraints (2)

 An FD is a property of the attributes in the schema

R

 The constraint must hold on every relation

instance r(R)

 If K is a key of R, then K functionally determines

all attributes in R (since we never have two

distinct tuples with t1[K]=t2[K])

Chapter 10-21

2.2 Inference Rules for FDs (1)

 Given a set of FDs F, we can infer additional FDs
that hold whenever the FDs in F hold

Armstrong's inference rules:

IR1. (Reflexive) If Y subset-of X, then X -> Y

IR2. (Augmentation) If X -> Y, then XZ -> YZ

(Notation: XZ stands for X U Z)

IR3. (Transitive) If X -> Y and Y -> Z, then X -> Z

 IR1, IR2, IR3 form a sound and complete set of
inference rules

Chapter 10-22

Inference Rules for FDs (2)

Some additional inference rules that are useful:

(Decomposition) If X -> YZ, then X -> Y and X -> Z

(Union) If X -> Y and X -> Z, then X -> YZ

(Psuedotransitivity) If X -> Y and WY -> Z, then WX -> Z

 The last three inference rules, as well as any other

inference rules, can be deduced from IR1, IR2,

and IR3 (completeness property)

Chapter 10-23

Inference Rules for FDs (3)

 Closure of a set F of FDs is the set F+ of all FDs
that can be inferred from F

 Closure of a set of attributes X with respect to F is
the set X + of all attributes that are functionally
determined by X

 X + can be calculated by repeatedly applying IR1,
IR2, IR3 using the FDs in F

Chapter 10-24

2.3 Equivalence of Sets of FDs

 Two sets of FDs F and G are equivalent if:

- every FD in F can be inferred from G, and

- every FD in G can be inferred from F

 Hence, F and G are equivalent if F + =G +

Definition: F covers G if every FD in G can be
inferred from F (i.e., if G + subset-of F +)

 F and G are equivalent if F covers G and G covers
F

 There is an algorithm for checking equivalence of
sets of FDs

Chapter 10-25

2.4 Minimal Sets of FDs (1)

 A set of FDs is minimal if it satisfies the

following conditions:

(1) Every dependency in F has a single attribute for its RHS.

(2) We cannot remove any dependency from F and have a set

of dependencies that is equivalent to F.

(3) We cannot replace any dependency X -> A in F with a

dependency Y -> A, where Y proper-subset-of X (Y

subset-of X) and still have a set of dependencies that is

equivalent to F.

Chapter 10-26

Minimal Sets of FDs (2)

 Every set of FDs has an equivalent minimal set

 There can be several equivalent minimal sets

 There is no simple algorithm for computing a

minimal set of FDs that is equivalent to a set F of

FDs

 To synthesize a set of relations, we assume that we

start with a set of dependencies that is a minimal

set (e.g., see algorithms 11.2 and 11.4)

Chapter 10-27

3 Normal Forms Based on Primary

Keys

3.1 Normalization of Relations

3.2 Practical Use of Normal Forms

3.3 Definitions of Keys and Attributes

Participating in Keys

3.4 First Normal Form

3.5 Second Normal Form

3.6 Third Normal Form

Chapter 10-28

3.1 Normalization of Relations (1)

 Normalization: The process of decomposing

unsatisfactory "bad" relations by breaking up their

attributes into smaller relations

 Normal form: Condition using keys and FDs of a

relation to certify whether a relation schema is in a

particular normal form

Chapter 10-29

Normalization of Relations (2)

 2NF, 3NF, BCNF based on keys and FDs of a

relation schema

 4NF based on keys, multi-valued dependencies :

MVDs; 5NF based on keys, join dependencies :

JDs (Chapter 11)

 Additional properties may be needed to ensure a

good relational design (lossless join, dependency

preservation; Chapter 11)

Chapter 10-30

3.2 Practical Use of Normal Forms

 Normalization is carried out in practice so that the
resulting designs are of high quality and meet the desirable
properties

 The practical utility of these normal forms becomes
questionable when the constraints on which they are based
are hard to understand or to detect

 The database designers need not normalize to the highest
possible normal form. (usually up to 3NF, BCNF or 4NF)

 Denormalization: the process of storing the join of higher
normal form relations as a base relation—which is in a

lower normal form

Chapter 10-31

3.3 Definitions of Keys and Attributes

Participating in Keys (1)

 A superkey of a relation schema R = {A1, A2,,

An} is a set of attributes S subset-of R with the

property that no two tuples t1 and t2 in any legal

relation state r of R will have t1[S] = t2[S]

 A key K is a superkey with the additional

property that removal of any attribute from K will

cause K not to be a superkey any more.

Chapter 10-32

Definitions of Keys and Attributes

Participating in Keys (2)

 If a relation schema has more than one key, each

is called a candidate key. One of the candidate

keys is arbitrarily designated to be the primary

key, and the others are called secondary keys.

 A Prime attribute must be a member of some

candidate key

 A Nonprime attribute is not a prime attribute—

that is, it is not a member of any candidate key.

Chapter 10-33

3.2 First Normal Form

Disallows composite attributes, multivalued

attributes, and nested relations; attributes

whose values for an individual tuple are

non-atomic

Considered to be part of the definition of

relation

Chapter 10-34

Figure 10.8 Normalization into 1NF

Note: The above figure is now called Figure 10.8 in Edition 4

Chapter 10-35

Figure 10.9 Normalization nested

relations into 1NF

Note: The above figure is now called Figure 10.9 in Edition 4

Chapter 10-36

3.3 Second Normal Form (1)

 Uses the concepts of FDs, primary key

Definitions:

 Prime attribute - attribute that is member of the
primary key K

 Full functional dependency - a FD Y -> Z
where removal of any attribute from Y means the
FD does not hold any more

Examples: - {SSN, PNUMBER} -> HOURS is a full FD

since neither SSN -> HOURS nor PNUMBER -> HOURS hold

- {SSN, PNUMBER} -> ENAME is not a full FD (it is called a
partial dependency) since SSN -> ENAME also holds

Chapter 10-37

Second Normal Form (2)

A relation schema R is in second normal

form (2NF) if every non-prime attribute A

in R is fully functionally dependent on the

primary key

R can be decomposed into 2NF relations via

the process of 2NF normalization

Chapter 10-38

Figure 10.10 Normalizing into 2NF and

3NF

Note: The above figure is now called Figure 10.10 in Edition 4

Chapter 10-39

Figure 10.11 Normalization into 2NF

and 3NF

Note: The above figure is now called Figure 10.11 in Edition 4

Chapter 10-40

3.4 Third Normal Form (1)

Definition:

 Transitive functional dependency - a FD X -> Z

that can be derived from two FDs X -> Y and Y -> Z

Examples:

- SSN -> DMGRSSN is a transitive FD since

SSN -> DNUMBER and DNUMBER -> DMGRSSN hold

- SSN -> ENAME is non-transitive since there is no set of

attributes X where SSN -> X and X -> ENAME

Chapter 10-41

Third Normal Form (2)

 A relation schema R is in third normal form
(3NF) if it is in 2NF and no non-prime attribute A
in R is transitively dependent on the primary key

 R can be decomposed into 3NF relations via the
process of 3NF normalization

NOTE:

In X -> Y and Y -> Z, with X as the primary key, we consider this a
problem only if Y is not a candidate key. When Y is a candidate key,
there is no problem with the transitive dependency .

E.g., Consider EMP (SSN, Emp#, Salary).

Here, SSN -> Emp# -> Salary and Emp# is a candidate key.

Chapter 10-42

4 General Normal Form Definitions

(For Multiple Keys) (1)

 The above definitions consider the primary key

only

 The following more general definitions take into

account relations with multiple candidate keys

 A relation schema R is in second normal form

(2NF) if every non-prime attribute A in R is fully

functionally dependent on every key of R

Chapter 10-43

General Normal Form Definitions (2)

Definition:

 Superkey of relation schema R - a set of attributes
S of R that contains a key of R

 A relation schema R is in third normal form
(3NF) if whenever a FD X -> A holds in R, then
either:

(a) X is a superkey of R, or

(b) A is a prime attribute of R

NOTE: Boyce-Codd normal form disallows condition (b)
above

Chapter 10-44

5 BCNF (Boyce-Codd Normal Form)

 A relation schema R is in Boyce-Codd Normal

Form (BCNF) if whenever an FD X -> A holds in

R, then X is a superkey of R

 Each normal form is strictly stronger than the previous one

– Every 2NF relation is in 1NF

– Every 3NF relation is in 2NF

– Every BCNF relation is in 3NF

 There exist relations that are in 3NF but not in BCNF

 The goal is to have each relation in BCNF (or 3NF)

Chapter 10-45

Figure 10.12 Boyce-Codd normal form

Note: The above figure is now called Figure 10.12 in Edition 4

Chapter 10-46

Figure 10.13 a relation TEACH that is

in 3NF but not in BCNF

Note: The above figure is now called Figure 10.13 in Edition 4

Chapter 10-47

Achieving the BCNF by

Decomposition (1)

 Two FDs exist in the relation TEACH:

fd1: { student, course} -> instructor

fd2: instructor -> course

 {student, course} is a candidate key for this relation and that

the dependencies shown follow the pattern in Figure 10.12

(b). So this relation is in 3NF but not in BCNF

 A relation NOT in BCNF should be decomposed so as to

meet this property, while possibly forgoing the preservation of

all functional dependencies in the decomposed relations. (See

Algorithm 11.3)

Chapter 10-48

Achieving the BCNF by

Decomposition (2)

 Three possible decompositions for relation TEACH

1. {student, instructor} and {student, course}

2. {course, instructor } and {course, student}

3. {instructor, course } and {instructor, student}

 All three decompositions will lose fd1. We have to settle for sacrificing the

functional dependency preservation. But we cannot sacrifice the non-additivity

property after decomposition.

 Out of the above three, only the 3rd decomposition will not generate spurious

tuples after join.(and hence has the non-additivity property).

 A test to determine whether a binary decomposition (decomposition into two

relations) is nonadditive (lossless) is discussed in section 11.1.4 under Property

LJ1. Verify that the third decomposition above meets the property.

