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Integral Transforms




Fourier Integral

If f(x) and f'(x) are piecewise continuous in every finite interval, and f(x) is absolutely

integrable on R, i.e.

converges,then

%[f(x—) +f(xH)]= ﬁ fer I e f (1)t e

Remark:the above conditions are sufficient, but not necessary.
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» Find the Fourier transform of the normalised Gaussian distribution
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This Gaussian distribution 1s centred on f+ = 0 and has a root mean square deviation

Ar = 1. (Any reader who 1s unfamihar with this interpretation of the distnbution should
refer to chapter 30.)
Using the definition (13.5), the Fourier transform of f(r) is given by
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where the quantity —{t%ie)*/(2r%) has been both added and subtracted in the exponent
in order to allow the factors involving the variable of integration r to be expressed as a
complete square. Hence the expression can be wrntten
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The guantity inside the braces is the normalisation integral for the Gaussian and equals
unmity, although to show this strictly needs resulits from complex varnable theory (chapter 24).
That it is equal to unity can be made plausible by changing the variable to 5 = 1 + itT°w
and assuming that the imaginary paris introduced into the integration path and limits
(where the integrand goes rapidly to zero anyway) make no difference.

We are left with the result that

— 1 —‘.':1'1:' e
o) = Tcx;u(T)_ (13.7)

which is another Gaussian distribution, centred on zero and with a root mean sguare
deviation Aw = 1/r. It 15 interesting to note, and an important property, that the Founer
transform of a Gaussian is another Gaussian.

In the above example the root mean square deviation in r was 1, and so it is

seen that the deviations or “spreads’ in ¢ and in w are inversely related:
Aw Ar = 1,

independently of the value of r. In physical terms, the narrower in time is, say, an
electrical impulse the greater the spread of frequency components 1t must contain.
Similar physical statements are valid for other pairs of Fourier-related variables,
such as spatial position and wave number. In an obvious notation, AkAx = 1 for
a Gaussian wave packet.

The uncertainty relations as usually expressed in gquantum mechanics can be
related to this if the de Broglie and Einstein relationships for momentum and
energy are introduced; they are

p = hk and E = hw.
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13.13 The Dirac d-function

Before going on to consider further properties of Fourier transforms we make a
digression to discuss the Dirac d-function and its relation to Fourier transforms.
The o-function 1s different from most functions encountered n the physical
sciences but we will see that a ngorous mathematical definition exists; the utihity
of the d-function will be demonstrated throughout the remainder of this chapter.
It can be visualised as a very sharp narrow pulse (in space, time, density, etc.)
which produces an integrated effect having a definite magnitude. The formal
properties of the d-function may be summarised as follows.
The Dirac d-function has the property that

o) =0 fort#0 (13.11)
but its fundamental defining property is

/I'lrlm: ~a)dt = f(a), (1312)

provided the range of integration includes the pomnt { = a; otherwise the integral



equals zero, This leads immediately to two further useful results:
b
/ ot)dt=1 forallab>0 (13.13)
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and

/d{r = q)dt = 1, (13.14)

provided the range ol integration includes 1 = a.
Equation (13,12) can be used to derive further useful properties of the Dirac
0-function:

o) = (1), (13.15)

. | .
olat) = =a(f), (13,16}
al

fo(t) =0, (13.17)
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B Prove that o(bt) = o(t)/[h.

Let us first consider the case where b > (. It follows that

a4 TN T
} ,Hrlﬂh'lrlrhzf j(-)ﬂ[rl—=-][l!i=-/ f(t)oe)d,
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where we have made the substitution = bt. But f(f) 1s arbitrary and so we mmediately
see that o(bt) = d(t)/b = o(t)/ b| for b >0,
Now consider the case where b= =¢ <. It follows that

a Rl £ WO [ Lt I R A
/ J'irhﬂhmhz/ j’(‘—);uu(—!):/ -J(E—)mn.n
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Janss =l o AR vy
= =f(()) = =f(l)] = = o(t)dt,
{I,Hl h,f[i |h|,/,”” (f)dt

where we have made the substitution ' = bt = =ct, But f(t) is arbitrary and so

| |
o(bt) = Fmrl.

for all b, which estabhshes the result. 4
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(1) Differentiation:
Z[f (1] = iwf(o). (13.28)
This may be extended to higher denvatives, so that
Z[1"(0)] = i0Z[f(1)] = —o'flo),

and so on.
() Integration:

I
] ~
j‘f{[ f{sl;.t's] = ;'_f“'” + 2ncolm), (13.29)
0]

where the term 2nco(w) represents the Fourner transform of the constant
of integration associated with the indefinite integral.
(m1) Scaling:

1~ s
F[flat =-'(— _ 1330
[f(ar)] HJHJ (13.30)
(1v) Translation:
Z1f(t +a)) = *f(w). (1331)

(v) Exponential multiplication:

]

F[e*f(1)] = flo +ia), (13.32)

where 2 may be real, imaginary or complex.
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» Prove relation (13.28),

Calculating the Fourier transform of {'(t) directly, we obtain

v &R J =3
| g ‘ [ -
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= iof(w),

if f(t) = 0 at t = £oo, as it must since [ |f(r)|dt is finite. <




Example 15.4.2  Hear Fow PDE

To illustrate another transformation of a PDE into an ODE, let us Founer transform the
heat flow partial differential equation

1

v
ax?’

where the solution y(x, 1) is the temperature in space as a function of time. By taking the
Fourier transform of both sides of this equation (note that here only @ is the transform
variable conjugate to x because 1 is the time in the heat flow PDE), where
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I ol
Viw, 1) = — wix, ne'™ dx,
\.I'IIIE.IT & Y
this yields an ODE for the Fourier transform W of y in the time variable 1,
d¥(w, 1)

- = —a*0*V(w,1).
dt

Integrating we obtain
2 2 . . r.ljm:f
nV==-g"wt+InC. or V=_C¢ "

where the integration constant C may still depend on @ and, 1n general, 15 determined
by initial conditions. In fact, C = W(w, () is the initial spatial distribution of ¥, so it is
given by the transform (in x) of the initial distribution of ¥, namely, ¥ (x, 0). Putting this
solution back into our inverse Fourier transform, this yields

| o 3.2
Wix, 1) = —_/ Clw)e™ ™" du,
Vain J-s

For simplicity, we here take C w-independent (assuming a delta-function imtial temper-
ature distribution) and integrate by completing the square in w, as in Example 15.1.1,
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making appropriate changes of variables and parameters (a> — a1, @ = x,1 = —w),
This yields the particular solution of the heat flow PDE,

II fr ( ll_ )
vix,l)= —ex = |,
avz N\ "4

which appears as a clever guess in Chapter 8. In effect, we have shown that  is the inverse
Fourier transform of C exp(-a’w’t). n

Euﬂli-‘l'ﬂ 1 : J : e sr s s e PR
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15.5

CONVOLUTION THEOREM

We shall employ convolutions to solve differential equations, to normalize momentum
wave functions (Section 15.6), and to investigate transfer functions (Section 15.7).

Let us consider two functions f(x) and g(x) with Founier transforms F(r) and G (1),
respectively. We define the operation

—

A
fep= / g(v) flx = v)dy (15.52)

\,-"3.'1 d =05

as the convolution of the two functions [ and g over the interval (=00, a0). This form of
an integral appears in probability theory in the determination of the probability density of
two random, independent variables. Our solution of Poisson’s equation, Eq. (9.148), may
be interpreted as a convolution of a charge distnibution, p(r;), and a weighting function,
(dmeplry = r5]) L. In other works this is sometimes referred to as the Faltung, to use the
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FIGURE 15.5

German term for “folding.”> We now transform the integral in Eq. (15.52) by introducing
the Founer transforms:

0
g(v) flx —vydy = f gy }f e " Vdrdy
I =

s F{I][ {1}#”-‘&1} Sa? |
ﬁ [ Peleaudll |

oo
=f F(OG(He " dr, (15.53)

O

interchanging the order of integration and transforming g(v). This result may be inter-
preted as follows: The Fourier inverse transform of a product of Fourier transforms is the
convolution of the original functions, f = g.

For the special case x = () we have

o o0
f F(r)G(r)dr =f f(=y)g(y)dy. (15.54)
— o0 — g

The minus sign in —y suggests that modifications be tried. We now do this with g* instead
of g using a different technique.
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Thank you!
All the best for Exams !




