UEEP2024 Solid State Physics

Topic 3 Free Electron in Metals



Drude’s classical theory of Electrical
Conduction

Drude assumed that a metal is composed of ions, which are
stationary, and valence electrons, which are free to move.

If no voltage applied to the metal then at each collision the
electron is deflected in a different direction so that the
overall motion is quite random.

The valence electrons appears to be similar to the
molecules in an idea gas.

The velocity of the electrons with mass m at temperature T

is given by the eq]L_Jation 3
“mvi ==K,T
2 2

where KB is the Boltzmann’s constant.



Drude’s classical theory of Electrical

Conduction
The mean free path A is the average distance
that an electron travels between collisions.

The relaxation time 7 is the average time
duration between collisions. P

The mean speed of the electron V:;-

The speed of electron at room temperature is
about 10° ms™.

The mean free path is about 1 nm and the
relaxation time about 1014 s.




Drude’s classical theory of Electrical
Conduction

When we apply an electric field to a sample,
the electrons are attracted towards the
positive end of the sample, a net flow of
electrons in this direction.

If the electric field is E, then the force on each
electron is eE. i
e

Acceleration on each electron is a= —

eEr e

Change in velocity Av=ar=-—-.

This quantity is called the drift velocity.



Drude’s classical theory of Electrical
Conduction

Electron mobility p =et/m.

The current density J = A nieE.

where n is the number of valence electrons per unit
volume,

Conductivity of the metal is given by O = T/LL.
Drube’s model is
a) consistent with ohm’s law.
b) Explain the phenomenon of electrical resistance.
c) Gives good values of conductivity.



Failures of Classical model

Conductivity should be directly proportional to the valence electron
concentration, not in good agreement with experimental data.

Electrical properties of alloys should be intermediate between the
values of corresponding pure materials. However many alloys have
resistivity which are considerably larger than those of either of the
pure constituents.

The dependence of resistivity on temperature:

Drube’s model predicted resistivity should be proportional to T2,
experimental measurement show that resistivity is actually
proportional to T over a wide range of temperature.

Drude ‘s model predict the molar specific heat capacity for
monovalent metal of 9R/2, 6R for divalent metal and 15R/2 for
trivalent metal. However, experiment results show that the molar
specific heat capacity at room temperature is approximately 3R,
regardless of the valency of the metal.



Example

Estimate the typical conductivity of a metal at
295 K assuming that the mean free path is
about 1 nm and the number of valency
electrons is about 10%° m-3.



Solution

 Thermal velocity

23
v — /3kBT _ 3(1.38x10 _)3(1295) 1 16x10°ms!
m 0.11x10

. . -9
* Relaxationtime __4_ 1x10° o 1575,

v 1.16x10°

ot
T e (107 o0 B62x10)

m 0.11x10™
= 2.42x10"Q'm™

O =



Free Electron Fermi Gas

e Atoms bounded by “free electrons”. Good
example is alkali metals (Li, K, Na, etc.)

-+
nk i1ons

/’,,”’l

- . . . . . 1 free electrons

Electron in a metal can move freely in a straight path over many
atomic distances, undeflected by collisions with other conduction
electron or by collisions with the atom cores



Free Electron Fermi Gas

1. A conduction electron is not deflected by ion cores
arranged on a periodic lattice

2. A conduction electron is scattered only infrequently by
other conduction electrons

|

Consequence of the Pauli exclusion principle

Free electron Fermi gas — A gas of free electrons
subject to the Pauli principle



Free Electron Fermi Gas

For a general guantum system

0

in—¥(r,t)= H¥Y(r,t 1
~E(Y ) € (1)
Hamiltonian operator Wave function
For a single particle in three dimensions
2
nLwr ) =— v vy (2)

ot 2m



Free Electron Fermi Gas
(1-D)

Consider a free electron gas in 1-D (electron of mass m is confined

to a length L by infinite barriers), (2) can be expressed as

> d°¥
o " d 2n = En\IJn (3)
2m dx "~

Energy of the electron

With boundary conditions

¥ (0)=0 ¥ (L)=0



Free Electron Fermi Gas

(1-D)
The solution of (3)
Y. = Asin 2—ﬂx where Enﬂn =L
A 2

Energy E, is given by wavevector

h2k2 /nyz'
=—2" where k =—
2m L

E

K-space

—n/L 0 =w/L 2xn/L
K—p




Free Electron Fermi Gas
3-D

Consider a free electron gas in 3-D (electron of mass m is confined

to a cube of edge L), (2) can be expressed as

he oo
— VA (1) = EF,(r) (4)

With boundary conditions
Y (x=0)=0 Y (x=L)=0
Y(y=0=0 Y, (y=L)=0
Y (z=0)=0 Y, (z=L)=0



Free Electron Fermi Gas
(3-D)

The solution of (4)
¥, = Asin 2—ﬂx sin 2—ﬂy sin 2—ﬂz (5)
A, /1y A,

where

1nx/lsz, 1ny/ly:L, Enzﬂ,Z:L
2 2 2



Free Electron Fermi Gas
(3-D, periodic boundary conditions)

+ 3-Dsystem Y (x+L,y,2) =¥, (x,Y,2)
. ch:((j)i(’jilgnbsoundary \ \Pk (X1 y + I—1 Z) — \Pk (X1 y1 Z)
W (%, Y,2+L) = ¥, (%, Y, 2)

The solution of (4)

¥ (r)=Aexp(ik-r)  the components of k satisfy

One allowed value of k per volume (27t/L)3



Free Electron Fermi Gas
(3-D, periodic boundary conditions)

Energy E, is given by

2 2
E = k=" (2 ikzek?) (6
2m 2m

K space

Fermi sphere




Free Electron Fermi Gas
(density of state)

total number of allowed energy state

N =2

4nk*13 L (ZmET/Z -
(2z/L) 37\ n°

Density of states — number of allowed energy state per unit energy
range

dN L (2mY"*
D(E)=d—E=2ﬂ2(h2j E (8)




Free Electron Fermi Gas
(Fermi energy)

The Fermi energy is defined as the energy of the topmost filled
level in the ground state of the N electron system.

/

The state of the N electron system at absolute zero

From (7), we get
B 7° ( 37°N
2m| L

213

For N electron system

EF



Free Electron Fermi Gas
(Fermi-Dirac distribution)

 The Fermi-Dirac distribution gives the probability that an
energy state with energy E is occupied by an electron

1 Fermi level — the energy at
f (E) = which the probability of

eXp|: E — U kT 1 occupation is 1/2

The electron density is given by

n= j D(E) f (E)dE



Example

Show that the probability for an electron
state at the Fermi energy is equal to 0.5
for all finite temperature.



Solution

* When E=E,
1 1
f(E)= o(E-Ee)/KeT | q e(EF “Er)/KeT 41
1 1 1
el +1 1+1 2



Example

Using the Fermi-Dirac distribution, determine
the values of energy corresponding to f = 0.9
and f=0.1 at a temperature of 300 K.



Solution

- =0.9

t(E)= oEE)KeT 1

_ 1
a(E-Er)/KeT g _ =

0.9
elE7Er)/KeT _1111-1=0.111
(E-E.)/K,T =In(0.111)
E. —E=220K,.T
E=E.-220K,.T



Fermi-Dirac Distribution

Probability of occupation

fE) \

1.0

0.0 | ~

Energy



Solution

- =0.1

t(E)= oE-E)KeT 1

. 1
a(E-Ee)/KeT 1 _ =+

0.1
e(E_EF)/KBT :10_1:9
(E—E.)/K,T =In(9)
E—E, =2.20K,T
E—E, +2.20K,T



Ohm’s Law

In an electric field € and magnetic field B, the force on an
electron of charge —q is

F :—q(g+\7x I§)

If B=0,

momentum=mv=Fzr=—Qer
thus

V=—¢& collision time



Ohm’s Law

The electric current density is
2

qnrc
m

‘J‘:an: g

If we define the electrical conductivity as
2
qnr
m

O =

then

J|=oer—

Ohm’s Law




Hall Effect

]}/ F=qgs=0qvB
Mt f=— Y B=R,JB

- qn /
* Hall coefficient




Quantum Statistics

A single quantum mechanical system consists of N particles
constrained to some volume V

assumption
1. weakly interacting particles
2. the particle density is low enough so that the

energy of the system can be considered as the sum of
the individual particle energies

‘ wavefunction of particle s

HY® = EW
number of particles with
/ energy E;



Quantum Statistics

How to determine the most probable distribution of
finding n, particles out of a total of N with energy E,, n,
with energy E,, and so on?

|

The most probable distribution (n,, n, ...,,n....) is the one
associated with the largest number of microscopically
distinguishable arrangements

Thus, the plan of attack would be to derive an expression for P,
the total number of microscopically distinct arrangement
corresponding to a given arbitraty sequence (n,, n, ...,n,,....) and
then find the particular sequence that maximizes P.



Three types of quantum particles

The particles of concern to us fall into one of three categories

1. Identical but distinguishable particles

e harmonic oscillators

2. ldentical indistinguishable particles of half-odd integral spin

(Fermions)
e electrons

- Obey Pauli exclusion principle

e protons

3. Identical indistinguishable particles of integral spin (Bosons)

e photons

PhONONS ey Pauili exclusion principle not apply



N particle system

Our model system is taken to contain N particles, each with a
spectrum of allowed energy levels

We divide the single-particle energy spectrum into energy “bins”.
Bin s, as an example, represents all the elementary quantum states
whose energies lie within some arbitrarily chosen interval AE,
centered about E.. The number of quantum states in bin s is
denoted by g.



ldentical but distinguishable particles

Determine P of N particles such that bin 1 contains n, particles,
bin 2 n, particles, and so on.

For bin 1, the total number of distinguishable choices is
g, N!

n!'(N—n,)

For bin 2, the total number of distinguishable choices is

P, = 22(N _nl)! or
n,!(N—-n,—n,)

N

or 1 N Cn1

P =

92 an n,



ldentical but distinguishable particles

the total number of distinguishable choices in which bin 1
contains n, particles, bin 2 n, particles, and so on, is

P(n,,n,,....N,,...)=PP,..P......




ldentical indistinguishable particles of half-
odd integral spin (Fermions)

Determine P of N particles such that bin 1 contains n, particles,
bin 2 n, particles, and so on.

For bin 1, the total number of distinguishable choices is

|
P = Ji or _C
1 g n
n!(g,—n,) o
For bin 2, the total number of distinguishable choices is
g,
P, = or C



ldentical indistinguishable particles of half-
odd integral spin (Fermions)

the total number of distinguishable choices in which bin 1
contains n, particles, bin 2 n, particles, and so on, is




ldentical indistinguishable particles of
integral spin (Bosons)

Determine P of N particles such that bin 1 contains n, particles,
bin 2 n, particles, and so on.

For bin 1, the total number of distinguishable choices is
P — (nl +0; _1)|
L n l( _ 1)|
(9, =1}

For bin 2, the total number of distinguishable choices is

P — (nz +0, _1)|
2 nz!(gz _1)!




ldentical indistinguishable particles of
integral spin (Bosons)

the total number of distinguishable choices in which bin 1
contains n, particles, bin 2 n, particles, and so on, is




Lagrange method

we wish to find the set of n, for which P is maximized
subjected to conditions :

o0

> n, =N =const

s=1

> E.n, = E =const
=1

We constrain our solution using Lagrange multipliers
forming the function:

F(n,n,....n,..)= In(P)+a(N -

Q0

nsj+,8(E —iESnsj

S


http://en.wikipedia.org/wiki/Lagrange_multipliers

Lagrange method

oF

—=0 for all s
on,

For Identical but distinguishable particles
Ing,.—Inn,—a—pE, =0

\
0,

n. = Maxwell-Boltzmann

" exp(a+ fE,)




Lagrange method

For Identical indistinguishable particles of half-odd integral
spin (Fermions)

In(gs _ns)_ln N, _a_ﬂEs =0
\
Js

nS = Fermi-Dirac

exp (o + BE, )+1




Lagrange method

For Identical indistinguishable particles of half-odd integral
spin (Fermions)

In(g, +n,)—Inn —a—BE, =0
\
Js

nS = Bose-Einstein

exp (o + BE, ) -1




Energy Band

.r+ '
nk 1ons

!'"””’J

. . . . . . 1 free electrons

Electron in a metal can move freely in a straight path over many
atomic distances, undeflected by collisions with other conduction
electron or by collisions with the atom cores



Energy Band

For a general guantum system

ihg‘P(r,t) = H¥(r,t) (1)

ot /‘ \

Hamiltonian operator Wave function

For a single particle in three dimensions

ihg‘{’(r,t)=—h—2V2\P(r,t)+V(r)\P(r,t) (2)
ot 2m



Energy Band

free electron gas - V(r)=0
h doW
o > En\IJn (3)
2m dx "~

Energy of the electron

/

Free Electron Model




Energy Band
it V(r)=0

Considering a periodic potential, V(r+T)=V(r)

VIV Y

(2) can be expressed as E\P(r) = —;_l— Vz\P(r) +V (I")LP(I') (4)
m




Energy Band

The periodic potential V(r) may be expanded as a Fourier series
in the reciprocal lattice vectors G

V(r)=>) Uge®" (5)

For 1-D system

or
V(X)=> Uge™
G

Thus, (4) can be rewritten as
h° d2P(x)
2m  dx°

E¥(x) =— +> Uge™¥(x) (6)



Energy Band

The wavefunction W(x) may be expressed as a Fourier series
summed over all values of the wavevector permitted by the
boundary conditions

P (x)=> Ce™ (7)

then

d*P(x) _ h2
'S C, gl
- 2m dx* z

V)W (x) =Y YU C e e



Energy Band

From (6), we get

2
Z f —k*C,e" +ZZU C, e'e = EZC gl

2m

Each Fourier component must have the same
coefficient on both sides of the equation

(;lk - E)Ck +ZUGCk—G =0

21,2
where A, :hz—k
m

(8)
\

central equation



Energy Band

Once we determine The C, from central equation, the
W(x) is given as

P, (X) _ Ckeikx _ ch_Gei(k—G)x
G
Rearrange (9), we get

\Pk (X) _ (Z CkGetijeikx _ uk (X)eikx

where > C,_se™ =u,(X)
G

(9)

(10)



Energy Band
(Bloch Theorem)

The solutions of the Schrodinger equation for a periodic
potential must be of a special form

¥, (r) =, (r)exp(ik 1) ”

uk (r) — uk (r +T‘)\ Translation vector

The eigenfunctions of the wave equation for a periodic potential
are the product of a plane wave exp(iker) times a function u,(r)
with the periodicity of the crystal lattice

v

Bloch theorem




Energy Band
(Kronig-Penney Model)

If V(x) is

-b O a

The solutions for (2) are

o |
Ae™ +Be™ 0O<x<a

Y(X) =+
) Ce¥+De™¥ —b<x<0

hK?

where UO—E:hZQZ/Zm and E =
2m




Energy Band

(Kronig-Penney Model)

The constants A,B,C,D are chosen so that W and dW/dx are
continuous at x=0 and x=a

¥, , =¥, = A+B=C+D 12)
¥l ¥ L ik(A-B)=Q(C-D) (13)
dX x=0 dX x=0

Bloch theorem

Y(a<x<a+b)=¥(-b< x<0)e @™



Energy Band
(Kronig-Penney Model)

‘P‘ _ LP‘X:_beik(aer)
U
Ael@ | BeiKa _ (Ce—Qb n DeQb)eik(a+b) (14)
d—\P — d_LP ik (a+b)
dx dx | _ .

X=a

U
iK(A iKa Be—lKa) Q(Ce—Qb DeQb)eik(a+b) (15)



Energy Band
(Kronig-Penney Model)

From (12)-(15), we can get

QZ_KZ

sinh Qb sin Ka + coshQb cos Ka = cosk(a +b)

2QK (16)

If the potential is a periodic delta function

Im and Ilim

b—0 U,—o

Then, (16 canredceto___—— P=Qba/2

(P/Ka)sin Ka+cosKa = coska (17)



(P/Ka)sin(Ka)+cos(Ka)

N B O P N W A O O
L . 1r S+ 1 5 1 5 S5 1Ty sy

Energy Band
(Kronig-Penney Model)

P=3nr/2

AAVRY.

-6

Ka (n)

Not allowed



Result;

Energy ([eV])
|

\\

Energy Band
(Kronig-Penney Model)

Feriodic EK. compared to Free Electron EK. j L

o
Energy gap
(Ka that is not

allowed)

\

Energy
~—" L pana

[ ' [
-2 0 2
k. [BpI] (unitless)



Band Structure

2n/a ! 4 :

. Degenerate
states

K, Rs

Extended zone scheme Reduced zone scheme

Actual band structures are usually exhibited as plots of energy
versus wavevector in the first Brillouin zone. This is helpful in
visualization and economical of graph paper.



Band Structure
If the band structure of A'is :




Band Structure

E E E conduction band

\ b

» K » k
Direct \%irect Overlap

valence band (negative bandgap)

Bandgap — the difference in energy between the lowest point of the
conduction band the highest point of the valence band.



Band Structure

|
L A ' A X UK X T

— Kk

band structure of Si



Energy Band
(conductor and insulator)

A band is filled from low energy to high energy

A E AE

Conduction|band

N e N I

E. Band edges E.
’ WValance band \ ’ \
>
k

Conductor Insulator



Energy Band
(conductor and insulator)

E Only a partially filled band can
conduct electricity. The
occupied states are not
“balance” under an external

]
\J field. This unbalance causes
the current flow.

Partially filled band

® A full band cannot conduct electricity. A full band is always a full
band no matter what the external field are

® An empty band cannot conduct electricity because it does not
have charge carrier.



Energy Band
(Equation of motion and effective mass)

The equation of motion of an electron in an energy
band is :

dk

F=h—=qg(E+vxB
" q(E +vxB) (1)

From (1), we can get

F:h%:me% 2
1 1 d°E
— _

dv d(da)j m, d’E m, A% dk?
me—:me — f

dt dt\ dk h o dtdk ,

effective mass



Energy Band
(Equation of motion and effective mass)

Approximate solution near a zone boundary

21,2
E:Eo+hz—k(A)

(2)
Electron rest mass
From (1), we get \
1dE_1n'A - m
ke wom e MTa B

An electron of mass m when put into a crystal respond to
applied fields as if the mass were m, (effective mass)




Example

By determine the number of grid points
contained beneath the surface of radius n,_,,
show that the Fermi energy (i.e. the energy of
the highest occupied state at T = 0K ) is given

by w2 (322N T
E, = |
2m| V




Each allowed quantum state can be represented by a grid point
(n,, n, n,).Grid points with the same energy are connected by a
surface of constant radius. In order to determine the Fermi
energy, find the values of the radius n_.,, just contains sufficient
states to accommodate all the valence electrons in the crystal




Solution

The volume contained beneath the surface
corresponds to one-eight of a sphere of radius
the volume is }X“ﬂn 5 _ M

6
Each grid point correspondmg to a cube of unit
volume, this expression also gives the number of

grid points beneath the surface.

As each grid point corresponding to a state which
can accommodate two electrons for a crystal
containing N electrons we require N/2 states.

N . 3N "
=— " Nax = ——
2 6 ( T j

max'




Solution

_ /2
* By writing nmaxz(nxz+ny2+n22)L

° Ener 21, 2 2 2
gy £ h°k _ h (ﬂ'j (nxz_l_nyz_l_nzz)
2m  2m\ L

(- ()
omilL) ™ omlL) \ &

2 (2%3NY R (3N
2m\ L’z 2m\ V




Thermal Conductivity in Metals

 Thermal conductivity of a Fermi gas is

7% nk°T 7°nk*T
Ke|:3' z'VF'IZ
mv, 3m
where n is the electron concentration

k is the Boltzmann constant
T is the temperature

m is them mass of electron
and 7 is the collision time.



Thermal Conductivity in Metals

Do the electrons or phonons carry the greater
nart of the heat current in a metal?

n pure metals the electronic contribution is
dominant at all temperatures.

In impure metals or in disordered alloys, the
electron mean free path is reduced by
collisions with impurities, and phonon
contribution may be comparable with the
electronic contribution.




Wiedemann-Franz law

* The Wisdemann-Franz law states that for
metals at not too low temperatures the ratio
of the thermal conductivity to the electrical
conductivity is directly proportional to
temperature, with the value of the constant of

proportionality independent of the particular

metal. y =y

2

Tn%m 72.2 k 2
o ne‘r 3 e T

”



Lorenz number L

The Lorenz number L is defined as

L= K/aT

2
The value of -z (Ej = 2.45x107° watt-ohm/deg’.

3

This remarkable result involves neither n nor m.

Experimental values of L at 0°C and 100°C are in
good agreement.



Experimental Lorenz numbers

L x102 watt-ohm/deg?

Metal 0°C 100°C
Ag 2.31 2.37
Au 2.35 2.40
Cd 2.42 2.43
Cu 2.23 2.33
Mo 2.61 2.79
Pb 2.47 2.56
Pt 2.51 2.60
Su 2.52 2.49
W 3.04 3.20

Zn 2.31 2.33



