
UEEP2024 Solid State Physics

Topic 3 Free Electron in Metals



Drude’s classical theory of Electrical 
Conduction

• Drude assumed that a metal is composed of ions, which are 
stationary, and valence electrons, which are free to move.

• If no voltage applied to the metal then at each collision the 
electron is deflected in a different direction so that the 
overall motion is quite random.

• The valence electrons appears to be similar to the 
molecules in an idea gas.

• The velocity of the electrons  with mass m at temperature T  
is given by the equation 

where KB is the Boltzmann’s constant.
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Drude’s classical theory of Electrical 
Conduction

• The mean free path  is the average distance 
that an electron travels between collisions.

• The relaxation time  is the average time 
duration between collisions.

• The mean speed  of the electron 

• The speed of electron at room temperature is 
about 105 ms-1.

• The mean free path is about 1 nm and the 
relaxation time about 10-14 s.
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Drude’s classical theory of Electrical 
Conduction

• When we apply an electric field to a sample, 
the electrons are attracted towards the 
positive end of the sample, a net flow of 
electrons in this direction.

• If the electric field is E, then the force on each 
electron is eE.

• Acceleration on each electron is             .

• Change in velocity 

• This quantity is called the drift velocity.
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Drude’s classical theory of Electrical 
Conduction

• Electron mobility µ =e/m.

• The current density

where n is the number of valence electrons per unit 
volume,

• Conductivity of the metal is given by 
• Drube’s model is

a) consistent with ohm’s law.
b) Explain the phenomenon of electrical resistance.
c) Gives good values of conductivity.
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Failures of Classical model

• Conductivity should be directly proportional to the valence electron 
concentration, not in good agreement with experimental data.

• Electrical properties of alloys should be intermediate  between the 
values of corresponding pure materials. However many alloys have 
resistivity which are considerably larger than those of either of the 
pure constituents.

• The dependence of resistivity on temperature:
Drube’s model predicted resistivity should be proportional to T1/2, 
experimental measurement show that resistivity is actually 
proportional to T over a wide range of temperature.

• Drude ‘s model predict the molar specific heat capacity for 
monovalent metal of 9R/2,  6R for divalent metal and 15R/2 for 
trivalent metal. However, experiment results show that the molar 
specific heat capacity at room temperature is approximately 3R, 
regardless of the valency of the metal. 



Example

Estimate the typical conductivity of a metal at 
295 K assuming that the mean free path is 
about 1 nm and the number of valency
electrons is about 1029 m-3.



Solution

• Thermal velocity

• Relaxation time

• Conductivity    
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Free Electron Fermi Gas
• Atoms bounded by “free electrons”. Good 

example is alkali metals (Li, K, Na, etc.)

Electron in a metal can move freely in a straight path over many 
atomic distances, undeflected by collisions with other conduction 
electron or by collisions with the atom cores



Free Electron Fermi Gas
1. A conduction electron is not deflected by ion cores 

arranged on a periodic lattice

2. A conduction electron is scattered only infrequently by 
other conduction electrons

Consequence of the Pauli exclusion principle

Free electron Fermi gas – A gas of free electrons 
subject to the Pauli principle



Free Electron Fermi Gas
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For a general quantum system
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For a single particle in three dimensions
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Free Electron Fermi Gas
(1-D)
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Consider a free electron gas in 1-D (electron of mass m is confined 

to a length L by infinite barriers), (2) can be expressed as

With boundary conditions
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Energy of the electron



Free Electron Fermi Gas
(1-D)
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Free Electron Fermi Gas
3-D
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Consider a free electron gas in 3-D (electron of mass m is confined 

to a cube of edge L), (2) can be expressed as

With boundary conditions
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Free Electron Fermi Gas
(3-D)
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Free Electron Fermi Gas
(3-D, periodic boundary conditions)

• 3-D system

• periodic boundary 
conditions
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One allowed value of k per volume (2/L)3



Free Electron Fermi Gas
(3-D, periodic boundary conditions)
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Free Electron Fermi Gas
(density of state)
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Free Electron Fermi Gas
(Fermi energy)
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The Fermi energy is defined as the energy of the topmost filled 
level in the ground state of the N electron system.

The state of the N electron system at absolute zero

From (7), we get

For N electron system



Free Electron Fermi Gas
(Fermi-Dirac distribution)

• The Fermi-Dirac distribution gives the probability that an 
energy state with energy E is occupied by an electron
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Example

Show that the probability for an electron 
state at the Fermi energy is equal to 0.5 
for all finite temperature.



Solution

• When E = EF, 

.
2

1

11

1

1

1

1

1

1

1
)(

0

/)(/)(

















e

ee
Ef

TKEETKEE BFFBF



Example

Using the Fermi-Dirac distribution, determine 
the values of energy corresponding to f = 0.9 
and f = 0.1 at a temperature of 300 K.
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Fermi-Dirac Distribution
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Solution
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Ohm’s Law
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In an electric field  and magnetic field B, the force on an 
electron of charge –q is

If B = 0, 
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Ohm’s Law
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The electric current density is

If we define the electrical conductivity as
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Hall Effect
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Quantum Statistics
A single quantum mechanical system consists of N particles 
constrained to some volume V

assumption

1. weakly interacting particles

2. the particle density is low enough so that the 
energy of the system can be considered as the sum of 
the individual particle energies
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Quantum Statistics
• How to determine the most probable distribution of 

finding n1 particles out of a total of N with energy E1, n2

with energy E2, and so on?

The most probable distribution (n1, n2 …,ns,….) is the one 
associated with the largest number of microscopically 
distinguishable arrangements

Thus, the plan of attack would be to derive an expression for P, 
the total number of microscopically distinct arrangement 
corresponding to a given arbitraty sequence (n1, n2 …,ns,….) and 
then find the particular sequence that maximizes P.



Three types of quantum particles

1. Identical but distinguishable particles

• harmonic oscillators

2. Identical indistinguishable particles of half-odd integral spin 
(Fermions)

• electrons

• protons

3. Identical indistinguishable particles of integral spin (Bosons)

• photons

• phonons

The particles of concern to us fall into one of three categories

obey Pauli exclusion principle

Pauli exclusion principle not apply



N particle system
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Our model system is taken to contain N particles, each with a 
spectrum of allowed energy levels

We divide the single-particle energy spectrum into energy “bins”. 
Bin s, as an example, represents all the elementary quantum states 
whose energies lie within some arbitrarily chosen interval Es

centered about Es. The number of quantum states in bin s is 
denoted by gs. 



Identical but distinguishable particles
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Determine P of N particles such that bin 1 contains n1 particles, 
bin 2 n2 particles, and so on. 

For bin 1, the total number of distinguishable choices is 

For bin 2, the total number of distinguishable choices is 
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Identical but distinguishable particles

the total number of distinguishable choices in which bin 1 
contains n1 particles, bin 2 n2 particles, and so on, is 
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Identical indistinguishable particles of half-
odd integral spin (Fermions)
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Determine P of N particles such that bin 1 contains n1 particles, 
bin 2 n2 particles, and so on. 

For bin 1, the total number of distinguishable choices is 

For bin 2, the total number of distinguishable choices is 
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Identical indistinguishable particles of half-
odd integral spin (Fermions)

the total number of distinguishable choices in which bin 1 
contains n1 particles, bin 2 n2 particles, and so on, is 
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Identical indistinguishable particles of 
integral spin (Bosons)
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Identical indistinguishable particles of 
integral spin (Bosons)

the total number of distinguishable choices in which bin 1 
contains n1 particles, bin 2 n2 particles, and so on, is 
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Lagrange method
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Lagrange method
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Lagrange method
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For Identical indistinguishable particles of half-odd integral 
spin (Fermions)
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Lagrange method
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For Identical indistinguishable particles of half-odd integral 
spin (Fermions)
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Energy Band

Electron in a metal can move freely in a straight path over many 
atomic distances, undeflected by collisions with other conduction 
electron or by collisions with the atom cores



Energy Band
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Energy Band
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Energy of the electron

V(r)=0

Free Electron Model



Energy Band
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Considering a periodic potential, V(r+T)=V(r)
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Energy Band
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Energy Band
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Energy Band
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central equation



Energy Band
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Energy Band 
(Bloch Theorem)
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The solutions of the Schrodinger equation for a periodic 
potential must be of a special form

The eigenfunctions of the wave equation for a periodic potential 
are the product of a plane wave exp(ik•r) times a function uk(r) 
with the periodicity of the crystal lattice
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Bloch theorem



Energy Band 
(Kronig-Penney Model)
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Energy Band 
(Kronig-Penney Model)
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Energy Band 
(Kronig-Penney Model)
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Energy Band 
(Kronig-Penney Model)
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Energy Band 
(Kronig-Penney Model)
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Energy Band 
(Kronig-Penney Model)

Energy gap

(Ka that is not 
allowed)



Band Structure

Actual band structures are usually exhibited as plots of energy 
versus wavevector in the first Brillouin zone. This is helpful in 
visualization and economical of graph paper.

2/a



Band Structure

/a 2/a 3/a
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If the band structure of A is :
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Band Structure

k
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Eg

k

E

Eg
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Eg

Direct Indirect Overlap 

(negative bandgap)

Bandgap – the difference in energy between the lowest point  of the 
conduction band the highest point of the valence band.

valence band

conduction band



Band Structure

band structure of Si 



Energy Band
(conductor and insulator)

A band is filled from low energy to high energy



Energy Band
(conductor and insulator)

 A full band cannot conduct electricity. A full band is always a full 
band no matter what the external field are

 An empty band cannot conduct electricity because it does not 
have charge carrier.

Only a partially filled band can 
conduct electricity. The 
occupied states are not 
“balance” under an external 
field. This unbalance causes 
the current flow.



Energy Band
(Equation of motion and effective mass)
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The equation of motion of an electron in an energy 
band is : 
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From (1), we can get
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effective mass
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Energy Band
(Equation of motion and effective mass)
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Approximate solution near a zone boundary

(2)

From (1), we get
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(3)

An electron of mass m when put into a crystal respond to 
applied fields as if the mass were me (effective mass)

Electron rest mass



Example

By determine the number of grid points 
contained beneath the surface of radius nmax, 
show that the Fermi energy (i.e. the energy of 
the highest occupied state at T = 0K ) is given 
by 
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Each allowed quantum state can be represented by a grid point 
(nx, ny, nz).Grid points with the same energy are connected by a 

surface of constant radius. In order to determine the Fermi 
energy, find the values of the radius nmax, just contains sufficient 

states to accommodate all the valence electrons in the crystal  

ny

nx

nz

nmax



Solution

• The volume contained beneath the surface 
corresponds to one-eight of a sphere of radius 
nmax, the volume is

• Each grid point corresponding to a cube of unit 
volume, this expression also gives the number of 
grid points beneath the surface.

• As each grid point corresponding to a state which 
can accommodate two electrons for  a crystal 
containing N electrons we require N/2 states.

•
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Solution

• By writing

• Energy   
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Thermal Conductivity in Metals

• Thermal conductivity of a Fermi  gas is

where n is the electron concentration

k is the Boltzmann constant

T is the temperature

m is them mass of electron

and  is the collision time.

m
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Thermal Conductivity in Metals

• Do the electrons or phonons carry the greater 
part of the heat current in a metal?

• In pure metals the electronic contribution is 
dominant at all temperatures.

• In impure metals or in disordered alloys, the 
electron mean free path is reduced by 
collisions with impurities, and phonon 
contribution may be comparable with the 
electronic contribution.



Wiedemann-Franz law

• The Wisdemann-Franz law states that for 
metals at not too low temperatures the ratio 
of the thermal conductivity to the electrical 
conductivity is directly proportional to 
temperature, with the value of the constant of 
proportionality independent of the particular 
metal.
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Lorenz number L

• The Lorenz number L is defined as

• The value of 

• This remarkable result involves neither n nor m.

• Experimental values of L at 0oC and 100oC are in 
good agreement.
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Experimental Lorenz numbers

L ×108 watt-ohm/deg2

Metal 0oC 100oC

Ag 2.31 2.37

Au 2.35 2.40

Cd 2.42 2.43

Cu 2.23 2.33

Mo 2.61 2.79

Pb 2.47 2.56

Pt 2.51 2.60

Su 2.52 2.49

W 3.04 3.20

Zn 2.31 2.33


