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Green's functions are named after the mathematician, George 

Green, who first developed the concept in the 1830s. In the modern study 

of linear partial differential equations, Green's functions are studied 

largely from the point of view of fundamental solutions instead. It is an 

important mathematical tool that has application in many areas of 

theoretical physics including mechanics, electromagnetism, solid-state 

physics, thermal physics, and the theory of elementary particles.  For the 

solution of Boundary value problems associated   with either ordinary or 

partial differential equations, one requires a  brief knowledge about 

Green's function . Unfortunately it took many years to emerge from the 

realms of more formal and abstract mathematical analysis as a potential 

everyday tool for the practical study of Boundary value problem. 

 

4.1 FUNDAMENTAL CONCEPT 

Initially we solve, by fairly elementary methods, a typical one  

dimensional boundary value problem for the understanding of Green’s 

function. 

Consider the differential equation, 

           )()( xfxuL                                                                       (4.1.1) 

where L is an ordinary linear differential operator, )(xf is a known 

function while )(xu is an unknown function. To solve above equation, one 
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method is to find the inverse operator 
1L in the form of an integral 

operator with a kernel ),( xG such that, 

         dfxGxfLxu )(),()()( 1  
                                 (4.1.2) 

The kernel of this integral operator is called Green’s function for the 

differential operator. Thus the solution to the non-homogeneous 

differential equation (4.1.1) can be written down, once the Green’s 

function for the problem is known. For this reason, the Green's function is 

also sometimes called the fundamental solution associated to the 

operator L. 

4.2 GREEN FUNCTION FOR ORDINARY  

                 DIFFERENTIAL EQUATIONS 

  Consider the problem of forced, transverse vibration of a taut string of 

length ''l . If we remove the time dependent parts of the solution by the 

usual separation of variation method, we obtain the following differential 

equation containing the transverse displacement of the string, u , as 

unknown, 

         lxxfxuk
dx

xud
 0;)()()( 2

2

2

                                   (4.2.1) 
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If the ends of the strings are kept fixed, then above equation must be 

solved subject to the boundary conditions: 

           0)()0(  luu                                                                        (4.2.2) 

By employing method of variation of parameters, we will assume that a 

solution to the problem actually exists and that furthermore it has a 

precise form 

       kxxBkxxAxu sin)(cos)()(                                           (4.2.3) 

If we differentiate (4.2.3) twice with respect to x and in passing assume 

that  

        0sincos  kxBkxA  

then (4.2.3)constitute a solution provided that, 

    )(cossin xfkxBkkxAk                                               (4.2.4) 

Solving assumption and equation (4.2.3) we find that 

k
kxxfxB

k
kxxfxA cos)()(;sin)()(                              (4.2.5) 

Hence solution of (4.2.1) can be written in the form 

dykyyf
k
kxdykyyf

k
kxxu

x

c

x

c

cos)(sinsin)(cos)(
21

            (4.2.6) 

where 1c  and 2c  are constants which must be chosen as to ensure that the 

boundary conditions are satisfied. 
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Inserting BC;  0)0( u  

We find that we must choose 1c  such that     

                         00sin)( 1

0

1

 cdykyyf
c

                              (4.2.7) 

Hence (4.2.6) reduces to  

dykyyf
k
kxdykyyf

k
kxxu

x

c

x

cos)(sinsin)(cos)(
20
          (4.2.8) 

which imply we must choose 01 c  

Using second BC in (4.2.8) we have 

                dykyyf
kl
kldykyyf

ll

c

sin)(
sin
coscos)(

02

                    (4.2.9) 

After slight manipulation we can re write the above equation as  

   dyklkyklkyyf
kl

dykyyf
l

c

]sincoscos[sin)(
sin

1cos)(
0

0

2

   

          dylykyf
kl

dykyyf
l

c

)]([sin)(
sin

1cos)(
0

0

2

          (4.2.10) 

 Solution can now be written in the form 

dylykyf
klk

kx

dykyyf
k

kxdykyyf
k

kxxu

l

xx

)(sin)(
sin

sin

cos)(sinsin)(cos)(

0

00








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          = dy
klk

ylkkxyfdy
klk

xykklyf
l

x

x

sin
)(sinsin)(

sin
)(sinsin)(

0





  

            = dyyxGyf
l

),()(
0
                                                                      (4.2.11)          

where ),( yxG can be introduced as, 

),( yxG = xy
lkk

xlkyk



0;

sin
)(sinsin

 

                  = lyx
lkk

ylkxk


 ;
sin

)(sinsin
 

This function ),( yxG is a two point function of position, known as the 

Green’s function for the equation (4.2.1) and the boundary conditions. Its 

existence is assured, provided 0sin kl . Thus we see that when 

),( yxG exists and when it is known explicitly then we can immediately 

write down the solution to our boundary value problem along with given 

boundary conditions. One of the main advantages of above expressed 

Green function is that it is independent of the Forcing term )(xf  and 

depends only upon the particular differential equation along with 

boundary conditions imposed. Once ),( yxG has been determined; always 

provided that the resulting integral in (4.2.11) exists. 

Before extending the concept of Green’s Function to the parabolic 

equations some basic concepts that are utilized in the solution have to be 

explored. 
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4.3 CONCEPT OF EIGEN VALUES AND  

                  EIGEN FUNCTIONS 

 Let )(x  satisfy a second order ordinary differential equations with two 

homogeneous boundary conditions: 

                       
0)(
0)0(

2

2






L

xd
d






                                                      (4.3.1)          

It is a boundary value problem, since the two conditions are not 

given at the same place, but at the two different places, 0x and Lx  . 

There is no simple theory which guarantees that the solution exists or is 

unique to this type of problem. In particular, we note that 0)( x satisfies 

the ODE and both homogeneous boundary conditions, no matter what the 

separation constant   is, even if   < 0, it is referred to as the trivial 

solution of the boundary value problem. It corresponds to 0),( txu , 

where )()(),( tGxtxu  . If the solution of given problem had been 

unique, then 0)( x  would be the only solution; we would not be able to 

obtain a nontrivial solutions of linear homogeneous PDE by separation of 

variables method. 

Fortunately there are other solutions. However, there do not exist a 

non trivial solution for all values of  . Instead we will show that there 

53 



 

are certain special values of  , called eigen values of the given 

boundary value problem for which there are non-trivial solutions, )(x . 

A non-trivial )(x , which exists for certain values of  , is known as 

eigen functions corresponds to the eigen value  . 

For the determination of eigen value of given problem, we observe 

that the given equation is linear and homogeneous with constant 

coefficients; two independent solutions are usually obtained in the form 

of exponentials; )exp()( xrx  . Substituting this into the differential 

equation yields the characteristic polynomial 2r .The solutions 

corresponding to two roots have significantly different properties 

depending on the values of  . 

 

Case:1   0  

In this case exponential solutions have imaginary exponents 

)exp( xi  and solution oscillates. For real solutions we can choose 

xcos and xsin  in general.  

Thus general solution in this case is : 

                    xCxCx  sincos)( 21                                 (4.3.2)        

Boundary condition at 0x    01 C   

so xCx  sin)( 2   
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Then boundary condition at  

Lx    0sin2 LC   

either 02 C  or 0sin L . 

 

If 02 C  then 0)( x , this is a trivial solution. 

Now   nLL 0sin  

We are searching for those values of   that have non-trivial 

solutions, therefore eigen value   must satisfy  

0sin x . 

  ,...3,2,1
2







 n

L
n  

Hence the eigen vector corresponding to eigen value  is 









L
xnCx  sin)( 2       

where 2C  is an arbitrary constant. 

 

Case:2 0  

In this case       xCCx 21)(      

corresponding to double zero roots; r =0 of the characteristic polynomial.  

Boundary condition at 0x   01 C   
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then boundary condition at  Lx    02 LC .  

Since length L is positive this gives a trivial solution 0)( x . 

Thus 0 is not an eigen value for the problem. 

 

Case:3 0  

In this case the roots of the characteristic polynomials are 

r , so solutions are )exp( x and )exp( x . We may 

prefer equivalent notation  . 

Considering 0 and suppose S , gives 0S  

Therefore we have  

            )exp()exp()( 21 xSCxSCx   

In terms of Hyperbolic function this can be rewritten as 

            )(sinh)(cosh)( 43 xSCxSCx   

Boundary condition at 0x   03 C   

Then, boundary condition at Lx    0)(sinh4 LSC . 

Since 0LS  and since sinh is never zero for a positive argument, it 

follows that 0   C4  .   0    )x(  .  

The only solution to (4.3.2) for 0    that solves the homogeneous 

boundary conditions is the trivial solution. 
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4.4 METHOD OF EIGEN FUNCTION 

       EXPANSION 

 Consider a problem of non homogeneous linear partial differential 

equation with homogeneous boundary conditions. 

                 
)()0,(

0),0(;0),0(

),(2

2

xgxv
Lvtv

txQ
x

vk
t
v











                                               (4.4.1) 

Now related Homogeneous problem is given by 

                  
0),0(
;0),0(

2

2










Lu
tu

x
uk

t
u

                                                                (4.4.2) 

the eigen functions of related homogeneous problem satisfy  

                
0)(
0)0(

2

2






L

xd
d






 

Now from above discussion we know that the eigen values are 

,...3,2,1
2







 n

L
n  and the corresponding eigen functions are 









L
xnxn
 sin)(  which are known. 
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The method of eigen function expansion, employed to solve the non 

homogeneous problem with homogeneous boundary conditions consists 

in expanding the unknown solution ),( txv in a series of the related 

homogeneous eigen functions: 

                         )()(),(
1

xtatxv n
n

n 




                                       (4.4.3) 

For each fixed t , ),( txv is a function of x , and hence ),( txv will have 

a generalized Fourier series.  

In this case we have an ordinary Fourier sine series, and 

generalized Fourier coefficients are na ,which varies as t  changes. Here 

)(tan are not the time dependent separated solutions tLnke
2)(  but 

they are just generalized Fourier coefficients for ),( txv which can be 

determined as follows 

Orthogonality of Sines : 

 Let,  

                        L
xnaxgxv

n
n

sin)()0,(
1





                           (4.4.4) 

 We will assume that standard mathematical operations are also valid for 

infinite series. Equation represents one equation in an infinite number of 

unknowns but it should be valid at every value of x . If we substitute a 

thousand different values of x  into above equation, each of the thousand 
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equations would hold, but there would still be an infinite number of 

unknowns. This is not an efficient way to determine na . Instead, we 

frequently will employ an extremely important technique based on 

noticing that the eigen functions 
L

xnsin 
 satisfying the following integral 

property.








 (4.4.5(b))        n           m     ;   L/2   
(4.4.5(a))        n           m     ;       0  

    dx     
L

xmsin    
L

xnsin   
L

0


 

where m  and  n  are positive integers.  

 To use this conditions (4.4.5) to determine na , we multiply both 

sides of (4.4.4) by 
L

xmsin 
 ( for any fixed integer m, independent of the 

‘dummy’ index n).  

                ))(sin(sinsin)(
1 L

xm
L

xna
L

xmxg
n

n
 





  

Now we integrate with respect to x , from x  = 0 to x  = L : 

                dx
L

xm
L

xnadx
L

xmxg
n

l

n

L

 





1 00

))(sin(sinsin)( 
 

 For finite series the integral of a sum of terms equals the sum of 

integrals. We assume that this is valid for this infinite series. Now we 

evaluate the infinite sum. From the integral property (4.4.5) we see that 

each term of the sum is zero whenever m n  . In summing over n, 
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eventually  n  equals  m. It is only for that one value of n ( n = m ) that 

there is a contribution to the infinite sum. The only term that appears on 

the right hand side of occurs when n  is replaced by  m  : 

                dx
L

xmadx
L

xmxg
L

m

L

 
0

2

0

sinsin)( 
 

Since the integral on the right equals L/2, we can solve for na  : 

dx
L

xnxg
Ldx

L
xm

dx
L

xmxg
a

L

L

L

m






sin)(2

sin

sin)(

02

0

0 



                      (4.4.6) 

The integral in (4.4.6) is considered to be known since x)(g  is the given 

initial condition.  

 

4.5   GREEN FUNCTIONS FOR PARABOLIC 

       DIFFERENTIAL EQUATION 

A concept of Green’s Function method now can be extended to a 

parabolic equation and its associated boundary value problem for brief 

understanding. 

Consider a problem associated with the Diffusion equation: 

                                     t
uu




 2                                                (4.5.1)(a) 
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which holds through out a finite, bounded region D. The boundary 

conditions imposed on the solution function u, is taken to be, 

                DPPfPu
tallforDptpu




)()0,(
,0),(

                  (4.5.1)(b) 

Where second equation represent the initial distribution of u throughout D 

consequently a “boundary value problem” for a parabolic equation can be 

typified as: 

                      DP
t
uPu 




 )(2  

                
DPPfPu

tallforDptpu



)()0,(
,0),(

                         (4.5.2) 

For solution of such problem we assume an expansion for the solution 

function, u, in the form, 

                      )()(),(
1

PutctPu n
n

n




                                             (4.5.3) 

where )(tcn is an undetermined function of t and the functions nu  are 

orthonormal eigen functions, with corresponding eigen values n  defined 

by the problem: 

        DPPvDPPvPv  0)(;0)()(2                           (4.5.4) 

Employing orthonormality property of the eigen function nu , we obtain 

from (4.5.3), 
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             PnDn dPutPutc )(),()(                                             (4.5.5)          

Differentiating with respect to time we have, 

           
PnD

PnDn

dPutPu

dPutPutc





)(),(

)(),()(
2






            

Applying Green’s identity to ),( tPu and )(Pun throughout the region D, 

and implementing the boundary conditions imposed on the functions we 

can write: 

           
PnD

PnDn

dPutPu

dPutPutc





)(),(

)(),()(
2

2








 

)()( tctc nnn   

The solution for this first order Ordinary differential equation for )(tcn  is: 

                       )exp()0()( tctc nnn                                   (4.5.6)                

Imposing Initial conditions on ),( tPu we find , 

                     
D Pnnn dPuPffc )()()0(                     (4.5.7) 

substituting (4.5.6) and (4.5.7) in (4.5.3) we obtain 

        
Qnn

n
nD

QnDn
n

n

dQuPutQf

dQuQfPuttPu











 














)()()exp()(

)()()()exp(),(

1

1
 

which gives  
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                ):,( tQPK )()()()exp(
1

tHQuPut nn
n

n




  

as our required Green’s Function for the parabolic Equation. Here 

Heviside function H(t) is included to emphasize the fact that the solution 

is identically zero for t < 0. 

Since H(t) = 1 for t = 0   

)()(lim
1

PnuQnu  K(P,Q:t)
n





   

and hence solution satisfies initial conditions of the problem. 

Finally examining more general problem posed by  

                  DPtPfPu
t
Pu




 ),()()( 2  

                DPPhPu
tallforDptpgtpu




)()0,(
,),(),(

 

If we consider this problem with one as connected with the distribution of 

temperature u , throughout the region D with prescribed initial and 

surface temperature distribution we can interprete   K(P,Q:t)  as being the 

temperature ,at time t, at the point P due to a heat source at the point Q. 

To construct a solution of above problem, we find it convenient to 

integrate )(; 2uuT)t(P,Q  K t  over the product domain XD T of the 

region D and time interval T  where  tT0 . 
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Now integrating by parts we have  

dTKdudS
n
Ku

n
uK

ddTTQuTtQPKTQuTtQPK

dTduuTtQPK

Q
D

q
D qq

t

QT

t
t

D

QT

t

D

}{

}),();,()],();,({[

)();,(

2

0

0

2

0











 




































 

Substituting given data with initial and boundary conditions as 0 : 

qD
q

t

QDQD

Q

t

D

dSTtqPK
n

TqgdtdQhtQPKdTQuQPK

dTdTQfTtQPK



 











)};,({),({)();,(),()0;,(

),();,(

0





  

                                                                                          (4.5.8) 
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