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INTERSYMBOL INTERFERENCE (ISI)

Ø Intersymbol Interference

Ø ISI on Eye Patterns

Ø Combatting ISI

Ø Nyquist’s First Method for zero ISI

Ø Raised Cosine-Rolloff Pulse Shape

Ø Nyquist Filter
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Intersymbol Interference
 Inter symbol interference (ISI) occurs when a pulse spreads out in 

such a way that it interferes with adjacent pulses at the sample instant.
 Example: assume polar NRZ line code. The channel outputs are 

shown as spreaded (width Tb becomes 2Tb) pulses shown (Spreading 
due to band limited channel characteristics).

Data 1

bT 0 bT0bT bT

Data 0

bT 0 bT0bT bT

Channel Input

Pulse width 

Channel Output

Pulse width 
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Intersymbol Interference
 For the input data stream:

 The channel output is the superposition of each bit’s 
output:

1 1110 0

bT bT2 bT3 bT40 bT5

A

bT bT2 bT3 bT40 bT5

1 1110 0

bT bT2 bT3 bT40 bT5

Resultant 
Channel Output 
Waveform
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ISI on Eye Patterns
 The amount of ISI can be seen on an oscilloscope 

using an Eye Diagram or Eye pattern.

Time (Tb)
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de Noise
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Distortion

bT Extension 
Beyond Tb is 
ISI
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Intersymbol Interference
Ø If the rectangular multilevel pulses are filtered improperly as they pass through a 
communications system, they will spread in time, and the pulse for each symbol may be 
smeared into adjacent time slots and cause Intersymbol Interference.

Ø How can we restrict BW and at the same time not introduce ISI?   3 Techniques.
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Ø Flat-topped multilevel input signal having pulse shape h(t) and values ak:

Intersymbol Interference
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Ø he(t) is the pulse shape that will appear at the output of the receiver filter. 
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Ø Equivalent transfer function:

Ø Receiving filter can be designed to produce a needed He(f) in terms of HT(f) and HC(f):

Ø Output signal can be rewritten as:

Intersymbol Interference

Ø He(f), chosen such to minimize ISI is called EQUALIZING FILTER)
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Ø Equivalent Impulse Response he(t) : 8



Combating ISI
 Three strategies for eliminating ISI:

 Use a line code that is absolutely band limited.
Would require Sinc pulse shape.
Can’t actually do this (but can approximate).

 Use a line code that is zero during adjacent sample instants.
It’s okay for pulses to overlap somewhat, as long as there is no 

overlap at the sample instants.
Can come up with pulse shapes that don’t overlap during 

adjacent sample instants.
§ Raised-Cosine Roll-off pulse shaping

 Use a filter at the receiver to “undo” the distortion introduced by 
the channel.
Equalizer. 
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Nyquist’s First Method for Zero ISI
Ø ISI can be eliminated by using an equivalent transfer function, He(f), such that the impulse 
response satisfies the condition:
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Ø There will be NO ISI and the bandwidth requirement will be minimum (Optimum 
Filtering) if the transmit and receive filters are designed so that the overall transfer function He(f) 
is: 

Ø This type of pulse will allow signalling at a baud rate of D=1/Ts=2B (for Binary R=1/Ts=2B) 
where B is the absolute bandwidth of the system.

Nyquist’s First Method for Zero ISI
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Nyquist’s First Method for Zero ISI
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Since pulses are not possible to create due to:
 Infinite time duration.
 Sharp transition band in the frequency domain.

 The Sinc pulse shape can cause significant ISI in the presence of timing 
errors.
 If the received signal is not sampled at exactly the bit instant 

(Synchronization Errors), then ISI will occur.

We seek a pulse shape that:
 Has a more gradual transition in the frequency domain.
 Is more robust to timing errors.
 Yet still satisfies Nyquist’s first method for zero ISI. 

Nyquist’s First Method for Zero ISI
he(t)

0
f

He(f)
1/fs

fs/2-fs/2Zero crossings at non-zero integer multiples of the bit period
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Raised Cosine-Rolloff  Nyquist Filtering

   
1

1
1

0 1 0

1,                                               

1 1 cos ,    B is the Absolute Bandwidth
2 2

0,                                               

  

 

 e

f f

f f
H f f f B

f

f B

f B f f f f







 


           
     




   

   
 

0

1 0
0 2

0

Where   is the  6-dB bandwidth of the filter

Rolloff factor: Bandwidth:  B (1 )
2

sin 2 cos 22
2 1 4

o

b

e e

f
Rfr r

f

f t f th t F H f f
f t f t
 







 



  

  
           

Ø Because of the difficulties caused by the Sa type pulse shape, consider other 
pulse shapes which require more bandwidth such as the Raised Cosine-rolloff  
Nyquist filter but they are less affected by synchrfonization errors.

Ø The Raised Cosine Nyquist filter is defined by its rollof factor number r=fΔ/fo.
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Raised Cosine-Rolloff  Nyquist Filtering
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Ø Now filtering requirements are relaxed because absolute bandwidth is 
increased. 

Ø Clock timing requirements are also relaxed.

Ø The r=0 case corresponds to the previous Minimum bandwidth case.
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Raised Cosine-Rolloff  Nyquist Filtering
Ø Impulse response is given by:    
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• The tails of he(t) are now 
decreasing much faster than the Sa 
function (As a function of t2).

• ISI due to synchronization errors 
will be much lower.
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Raised Cosine-Rolloff  Nyquist Filtering

Frequency response and impulse 
responses of Raised Cosine pulses for 
various values of the roll off parameter.

 r B
r ISI
 
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Raised Cosine-Rolloff  Nyquist Filtering
Ø Illustrating the received bit stream of Raised Cosine pulse shaped 
transmission corresponding to the binary stream of 1 0 0 1 0 for 3 different 
values of r=0, 0.5, 1. 

1        0          0         1           0 1          0          0         1           0
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 The bandwidth of a Raised-cosine (RC) rolloff pulse shape is a 
function of the bit rate and the rolloff factor:

 Or solving for bit rate yields the expression:

 This is the maximum transmitted bit rate when a RC-rolloff pulse 
shape with Rolloff factor r is transmitted over a baseband 
channel with bandwidth B.
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Nyquist Filter
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Ø Theorem: A filter is said to be a Nyquist filter if the effective transfer function is :

Ø There will be no intersymbol interference at the system output if the symbol rate is

Ø Raised Cosine Filter is also called a NYQUIST FILTER.

Ø NYQUIST FILTERS refer to a general class of filters that satisfy the 
NYQUIST’s First Criterion. 
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Nyquist Filter Characteristics
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THANK YOU
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