

Lecture -2Mendelian Principles of heredity by **Dr. Praveen Kumar** Asst. Prof. GPB MSSSoA, CUTM, Odisha

Genetics terms you need to know

- Gene a unit of heredity;
 a section of DNA sequence encoding a single protein
- **Genome** the entire set of genes in an organism

- Alleles two genes that occupy the same position on homologous chromosomes and that cover the same trait (like 'flavors' of a trait).
- Locus a fixed location on a strand of DNA where a gene or one of its alleles is located.

 Homozygous – having identical alleles (one from each parent) for a particular characteristic.

- Heterozygous having two different alleles for a particular characteristic.
- Dominant the allele of a gene that masks or suppresses the expression of an alternate allele; the trait appears in the heterozygous condition.

- Recessive an allele that is masked by a dominant allele; does not appear in the heterozygous condition, only in homozygous
- <u>Genotype</u> the genetic makeup of an organisms
- <u>Phenotype</u> the physical appearance of an organism (Genotype + environment)

 Monohybrid cross: a genetic cross involving a single pair of genes (one trait); parents differ by a single trait.

- **P** = Parental generation
- F₁ = First filial generation; offspring from a genetic cross.
- F₂ = Second filial generation of a genetic cross

Giegor Johann Mendel (1822-84)

enturion

Empowering Communities...

 In 1866 he published <u>Experiments in</u> <u>Plant Hybridization</u>, (<u>Versuche über</u> <u>Pflanzen-Hybriden</u>) in which he established his Principles of Inheritance

- He tried to repeat his work in *Hieraceum* (facultative apomict), Honey bees (haploid male) and Rajama (Polygenic variation)
- Work was largely ignored for 34 years, until 1900, when 3 independent botanists rediscovered Mendel's work

•

Mendel was the first biologist to use Mathematics – to explain his results quantitatively.

Mendel predicted
 The concept of genes
 That genes occur in pairs
 That one gene of each pair is present in the gametes

Sea as an experimental material ?

Contrasting forms

- Perfect flower
- Self pollinated crop

- Large flower- help in emasculation & pollination
- Short life cycle- annual
- Fasy to arow occupy less space

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

7 Characteristics in Peas

Trait	Stem length	Pod shape	Seed shape	Seed color	Flower position	Flower color	Pod color	
Characteristics	Tall	Inflated	Smooth	Yellow	Lateral	Purple	Green	
	¥2 Dwarf		() Wrinkled	Green	ے۔ Terminal) White	Yellow	
	Constricted							

Sendel's laws of inheritance

I. Law of segregation: During gamete formation, the alleles for each gene segregate from each other so that each gamete carries only one allele for each gene.

II. Law of independent assortment: Genes for different traits can segregate independently during the formation of gametes

Monohybrid cross

- Parents differ by a single trait.
- Crossing two pea plants that differ in stem size, one tall one short
 - T = allele for Tall
 - t = allele for dwarf

TT = homozygous tall plant t t = homozygous dwarf plant TT × t t

Mendel's Principles

<u>1. Principle of Dominance</u>:

One allele masked another, one allele was dominant over the other in the F_1 generation.

<u>2. Principle of Segregation</u>:

When gametes are formed, the pairs of hereditary factors (genes) become separated, so that each sex cell (egg/sperm) receives only one kind of gene. Centurion UNIVERSITY Shaping Lives... Empowering Communities..

Dihybrid crosses

 Matings that involve parents that differ in <u>two</u> genes (two independent traits)

For example, flower colo

P = purple (dominal)

p =white (recessive)

and stem length:

T = tall

t = short

F1 Generation: All tall, purple flowers (Tt Pp)

Test cross

When you have an individual with an unknown genotype, you do a <u>test</u> <u>cross</u>.

Test cross: Cross with a homozygous recessive individual.

For example, a plant with **purple** flowers can either be **PP** or **Pp**... therefore, you cross the plant with a *pp* (white flowers, homozygous recessive)

P ?

Test cross

If you get all 100% purple flowers, then the unknown parent was \mathbf{PP} ... \mathbf{P}

•If you get 50% white, 50% purple flowers, then the unknown parent was Pp...

Exceptions To Mendel's Original Principles

Centurion UNIVERSITY Shaping Lives... Empowering Communities...

- Incomplete Pleiotropy
 - dominance Environmental effects
- Codominance on gene expression
- Multiple alleles Linkage
- Polygenic traits Sex linkage
- Epistasis

THANK YOU