

Lecture -5Gene Interaction by **Dr. Praveen Kumar** Asst. Prof. GPB MSSSoA, CUTM, Odisha

Genes usually function or express themselves singly or ndividually. suppersonally cases are known where two genes of the Shaping Stapping allelic pair or genes of two or more different allelic pairs influence one another. This is called gene interaction **Non-allelic gene Interactions** These are interactions between genes located on the same chromosome or different but non-homologous chromosomes on controlling a single phenotype to produce a different expression. Each interaction is typical in itself and ratios obtained are different from those of the Mendelian dihybrid ratios.

he interaction of genes may be of following types

1) Two gene pairs affecting same character – 9:3:3:1 UNIVERSITY 2) Epistasis, one gene hides effect of other

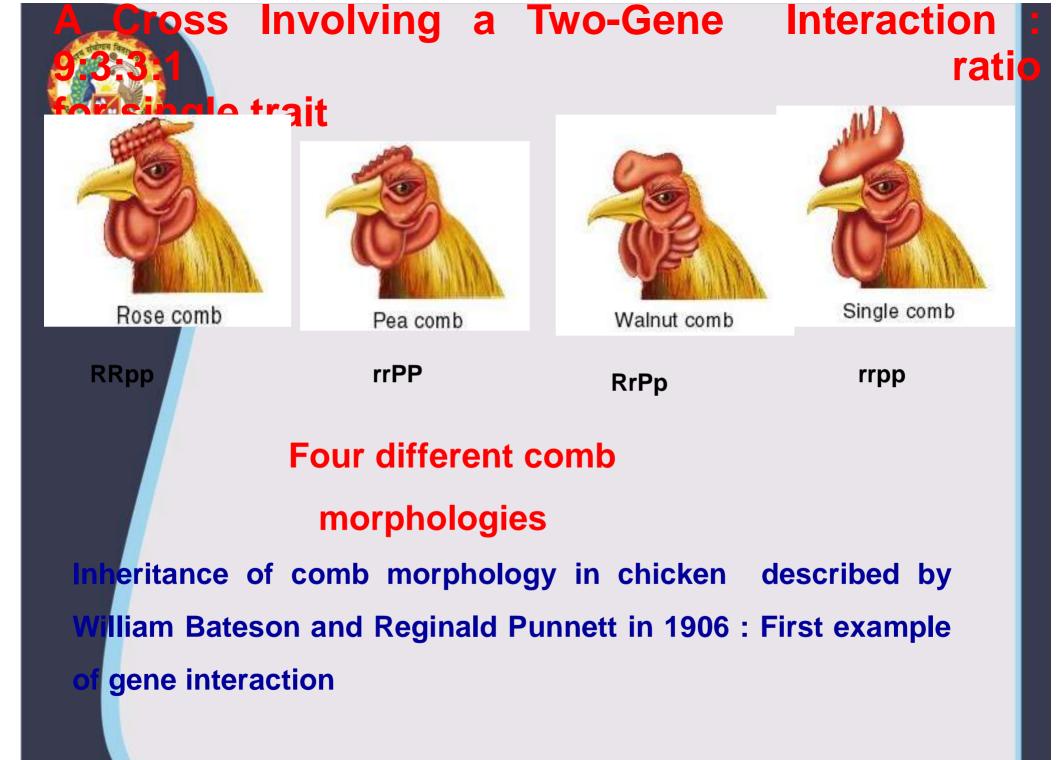
- a) Recessive Epistasis 9:3:4
- b) Dominant epistasis 12:3:1
- 3) Complementary genes 9:7 (2 genes responsible for production of a particular phenotype)
- 4) Duplicate genes 15:1 (same effect given by either of two genes)
- 5) Polymeric gene action 9:6:1
- 6) Inhibitory gene action 13:3

sene interacti	Inheritance Pattern &Example	A-/B- 9/16	A-/bb 3/16	aa/ B- 3/16	aabb 1/16	RATIO
Centurion UNIVERSITY Shaping Lives Exposed by Communities.	Comb shape Chicken	9 Walnut	3 Rose	3 Pea	1 Single	9:3:3:1 W:R:P:S
Recessive Epistasis	Coat Colour Mouse	9 Agouti	3 Albino	3 Black	1 Albino	9:3:4 Ag:BI:AI
Dominant Epistasis	Fruit colour squash	9 white	3 white	3 yellow	1 green	12:3:1 W:Y:G
Complem entary genes	Flower Colour Lathyrus	9 Purple	3 White	3 White	1 white	9:7 P:W
Duplicate genes	Fruit Shape capsella	9	3	3	1	15:1 Tri: Top
Polymeric Gene action	Fruit Shape Squash	9 Disc	3 Circular	3 circular	1 Long	9:6:1 D:C:L
Inhib <mark>itory</mark> gene action	Maize Aleurone colour	9 White	3 Red	3 white	1 White	13:3 W:R

ADDITIVE GENE EFFECT Two gene pairs affecting the same character :

enturion NIVERSITY COMB Shape in chicken

wering Communities 9:3:3:1-for single character) Gene R- rose comb -Rp Gene P – Pea Comb-rP The dominant alleles of each of the two genes produce separate forms of phenotype when they are alone (heterozygous) Both R and P when brought together form a new phenotype walnut Allele R dominant over r Allele P dominant over p rr and pp produce single comb

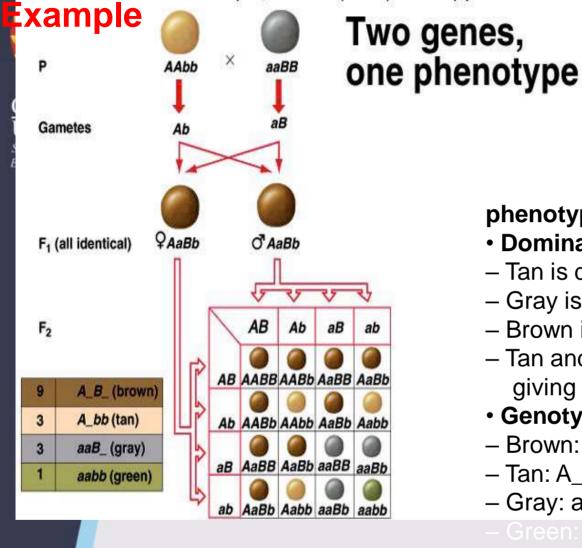

rainer Farm		RRpp x Rose) es Rp	rrPP (Pea) rP		GENET EXPRE	TIC SSION
Centurion UNIVERSITY Shaping Lives		RrP	'p	walnut		
Empowering Communitie	^{cs}	RP	Rp	rP	rp	F2
	RP	RP RP 1	Rp RP 2	rP RP 3	rp RP 4	Generation
	Rp	RP Rp 5	Rp Rp 6	rP Rp 7	rp Rp 8	
	rP	RP rP 9	Rp rP 10	rP rP 11	rp rP 12	9:3:3:1
	rp	RP rp 13	Rp rp 14	rP rp 15	rp rp 16	

RP-Walnut 1,2,3,4.5,7,9,10,13=9

- **Rp**-Rose 6,8,14=3
- **rP-** pea 11,12,15=3

```
rp- Single 16=1
```

so the ratio is 9:3:3:1 just like normal dihybid ratio for two traits but it is for single trait i.e. comb shape having 4 different forms



×	- Co		RP	neratio <i>Rp</i>	on rP	rp
(rose comb) RRpp	(pea comb) rrPP	RP	<i>RRPP</i> Walnut	<i>RRPp</i> Walnut	<i>RrPP</i> Walnut	<i>RrPp</i> Walnut
Wyandotte	Brahma	Rp	<i>RRPp</i> Walnut	<i>RRpp</i> Rose	<i>RrPp</i> Walnut	<i>Rrpp</i> Rose
F ₁ generation		rP	<i>RrPP</i> Walnut	<i>RrPp</i> Walnut	<i>rrPP</i> Pea	<i>rrPp</i> Pea
(F	walnut RrPp) Pp) x F ₁ (<i>RrPp</i>)	rp	<i>RrPp</i> Walnut	<i>Rrpp</i> Rose	<i>rrPp</i> Pea	<i>rrpp</i> Single
F ₂ generat	ion consisted of	f chicke	ns with	four typ	oes of c	ombs
	rose : 3 pea : 1 nd Punnett reaso		at comb	morphe	ology is	
determined by				•		

No different appe

The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Where both A and B are present add colour so new phenotype brown is produced

phenotype classes

- Dominance Relationships:
- Tan is dominant to green
- Gray is dominant to green
- Brown is dominant to gray, green and tan.
- Tan and Gray are incompletely dominant, giving rise to brown.
- Genotypic classes:
- Brown: A_B_
- Tan: A bb
- Gray: aaB_

9:3:3:1

here are 4 phenotypes in F2, so are governed by more than one gene It was governed by one gene and its two alleles F2 would have shown only 3 phenotypes in 1:2:1 ratio

EPISTASIS

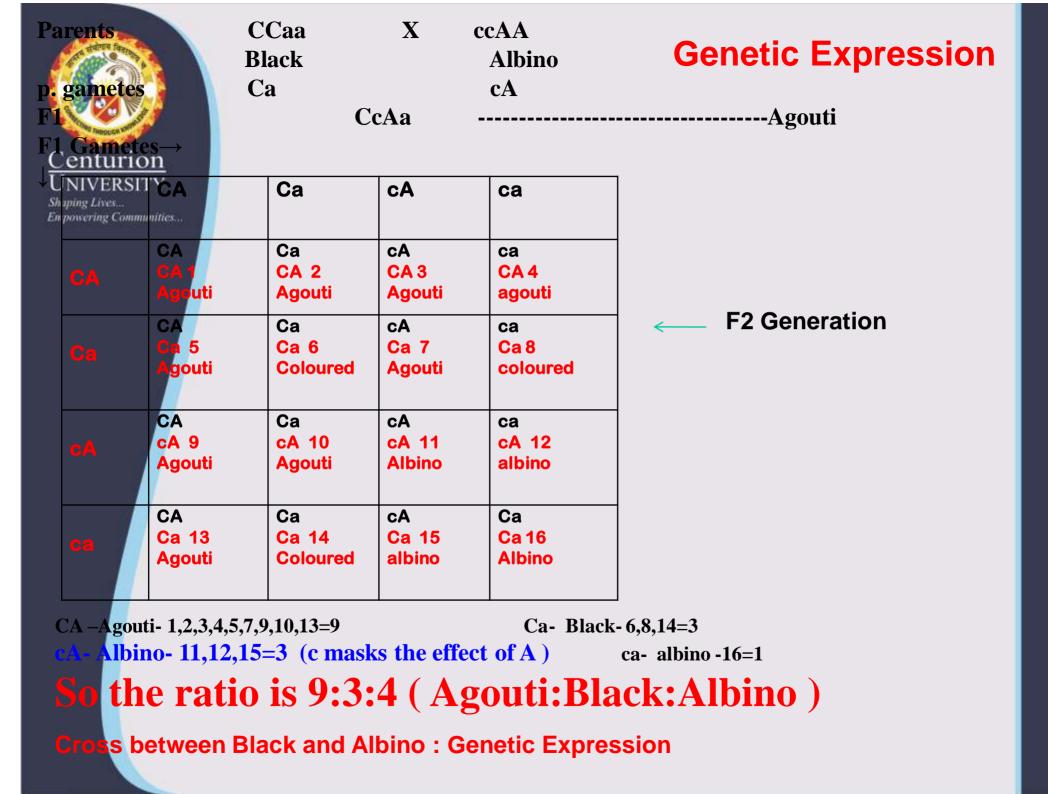
Gene hides the effect of other gene. It is different from Centurion Westerel's Dominance which is meant for intragenic alleles (alleles (alleles of a gene) but here dominance works at intergenic level (alleles of different genes). A gene which masks (hides) the action of another gene (non allelic) is termed as epistatic gene. The gene whose effects are masked is called hypostatic gene

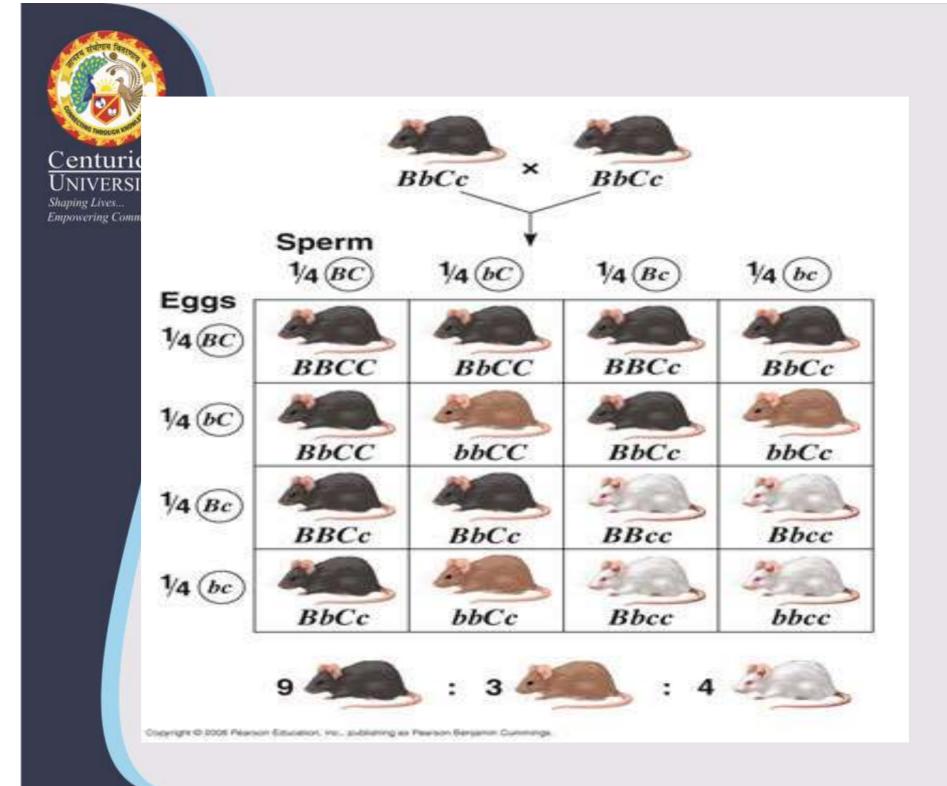
- For example if two gene A and C with their alleles a and c take part in a cross then epistasis can be of following types
- 1) Recessive Epistasis Recessive allele (c) of one gene may hide the effect of dominant allele (A) of other gene
- 2) **Dominant Epistasis** Dominant allele (A) of one gene may hide the effect of dominant allele (C) of other gene.

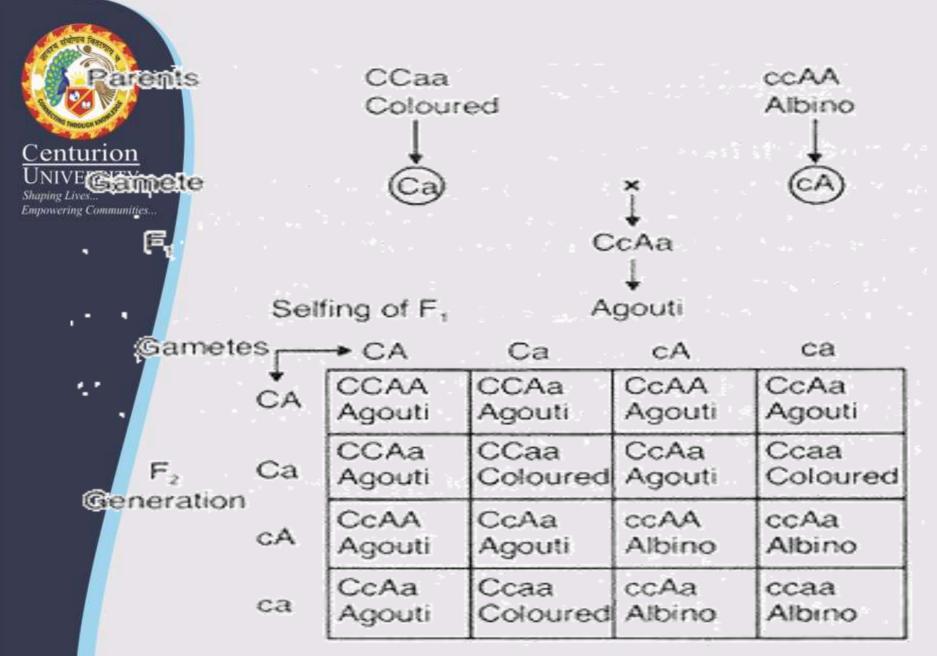
Recessive epistasis:

Here the recessive allele masks the effect of dominant allele of other gene.

Conmicenthe wild body colour is known as agouti (greyish) and is controlled by a UNIVERSITY


- The dominant allele C in the presence of 'a' gives coloured mice.
- In the presence of dominant allele C, A gives rise to agouti.
- So, CCaa will be coloured and ccAA will be albino.
- When coloured mice (CCaa) are crossed with albino (ccAA), agouti mice (CcAa) appear in F_1 .
- cc masks the effect of AA and is therefore epistatic. Consequently,
- cc AA is albino.
- The ratio 9 : 3 : 3 : 1 is modified to 9 : 3 : 4.


The combination ccaa is also albino due to the absence of both the dominant alleles.


ecessive Epistasis ample : Coat colour of Mouse Coat colour is controlled by Gene A, A Shypostatic to recessive allele Empowering Communities.. e dominant allele C in absence of A gives coloured mice When both C and A are present colour is Agouti (wild type most common) due to banded hair : Near skin Grey yellow Black Two other colours are Albino and solid black

AACC (agouti) x aacc (albino AaCc (all agouti) AaCc x AaCc **Phenotype** Genotyp e Agouti A-C-9/16 Albino 3/16 A-cc 3/16 aaC Black aacc Albino 1/16

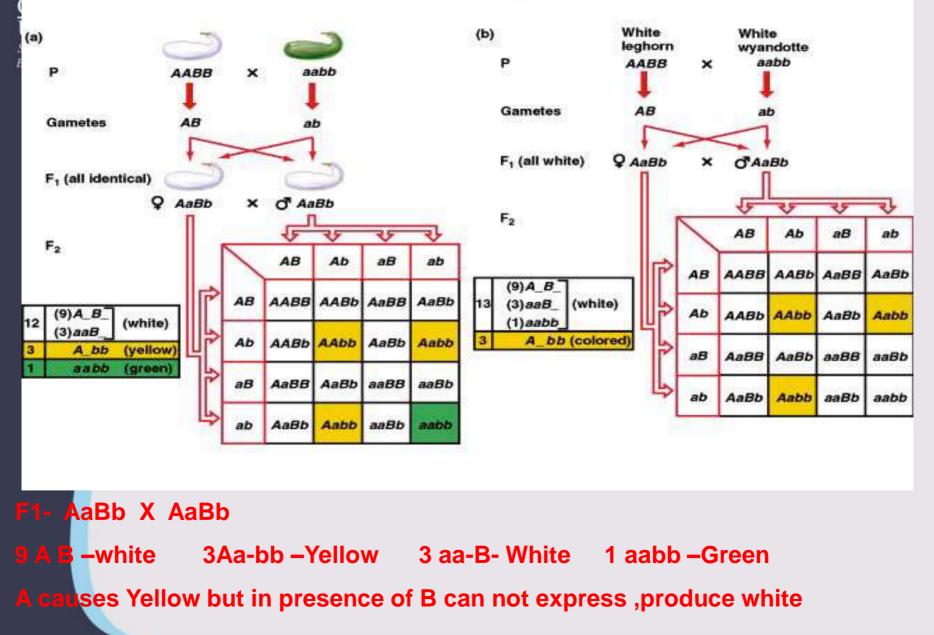
The c locus is epistatic to the A locus. 9 (Agouti) :3 (Black) :4 (Albino) F_2 ratio

F₂ Phenotypic ratio : 9 (agouti) : 3 (Coloured) : 4 (Albino)

(b) Dominant epistasis:

summer equash or Cucurbita pepo, there are three types of fruit colour enturion ellow, green and white. White colour is dominant over other colours, while ellow is dominant over green. Gene for white colour (W) masks the effects of yellow colour gene (Y). So yellow colour is formed only when the dominant epistatic gene is represented by its recessive allele (w). When the hypostatic gene is also recessive (y), the colour of the fruit is green. White Fruit - WY, Wy Yellow Fruit - wY Green Fruit – wwyy A cross between a pure breeding white summer squash, (WWYY) with a pure breeding green summer squash, (wwyy) yields white fruits in the F_1 **generation.** Upon selfing of F_1 the F_2 generation comes to have

12 white fruit : 3 yellow fruit : 1 green fruit.


Un	P game FI Ger nturion IVERSITY	s WWYY White tes WY reration netes	X ww Gre w Hybrid W	en /y	Genet	t ic Expression
	ng Liver wering Communities Female Male	WY	Wy	wY	wy	F2 generation
	WY	WY WY 1 white	Wy WY2 white	WY WY 3 white	wy WY 4 white	
	wy	WY Wy 5 white	Wy Wy 6 white	wY Wy 7 white	wy Wy 8 white	
	wY	WY wY9 white	Wy wY 10 white	wY wY 11 Yellow	wy wY 12 Yellow	
	wy	WY Wy 13 white	Wy Wy 14 white	wY wy 15 <mark>Yellow</mark>	wy wy 16 green	

WY-White-1,2,3,4,5,7,9,10,13=**12 white : 3Yellow :1 green** Wy-White-6,8,14=3 wY-yellow-11,12,15=3 wy-Green-16=1

FRUIT COLOUR SQUASH : 12 : 3 : 1

The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Dominant epistasis

COMPLEMENTARY GENES

Contribution are responsible for a particular phenotype. Production of one UNIVERSITY requires dominant alleles of both the genes controlling the character.

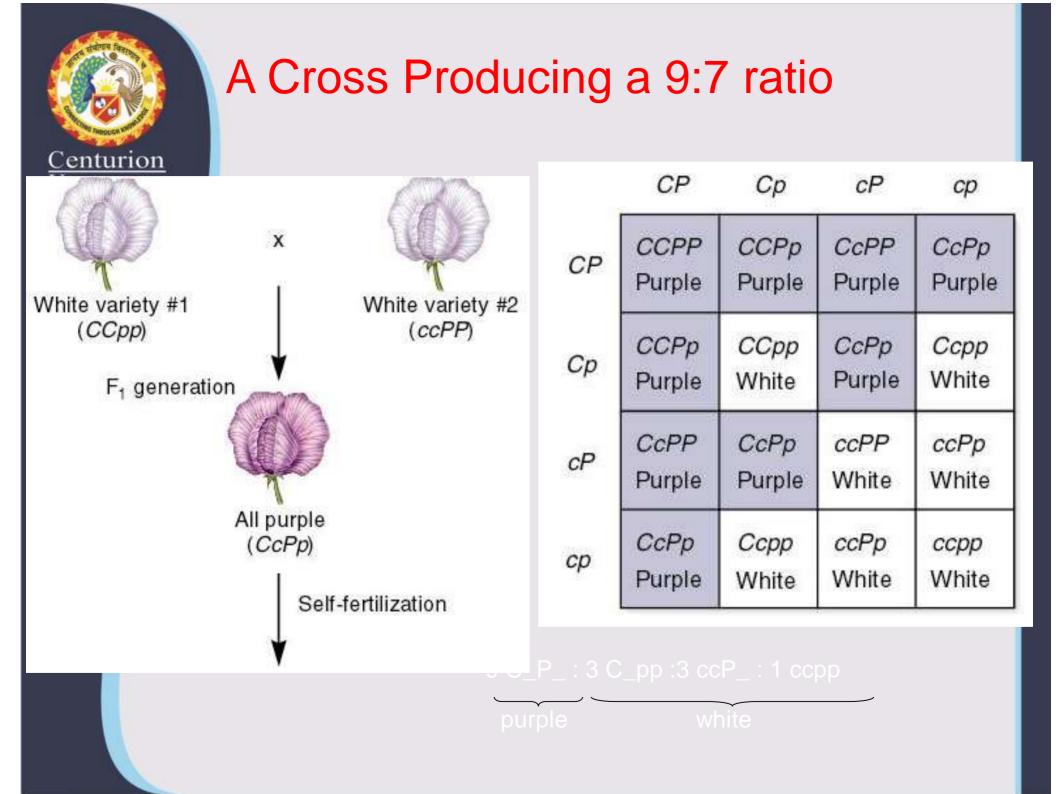
The complementary genes are two genes present on separate gene loci that interact logether to produce dominant phenotypic character, neither of them if present alone, can expresses itself. It means that these genes are complementary to each other.

Example is flower colour of <u>Lathyrus</u> <u>odoratus</u> (Keshari/pea grass) .The colour of flower is either purple or white. Purple colour is produced only when dominant A is complemented by Dominant Allele B **Bateson and Punnet** have demonstrated that in sweet pea (*Lathyrus odoratus*) purple colour of flowers develop as a result of interaction of two dominant genes C <u>Centurion</u> and VERSIT the absence of dominant gene C or P or both, the flowers are white. It is believed withat gene C produces an enzyme that catalyzes the formation of necessary raw material for the synthesis of pigment anthocyanin and gene P produces an enzyme which transforms the raw material into the pigment. It means the pigment anthocyanin is the product of two biochemical reactions, the end product of one reaction forms the substrate for the other.

Product of Gene C

Product of Gene P

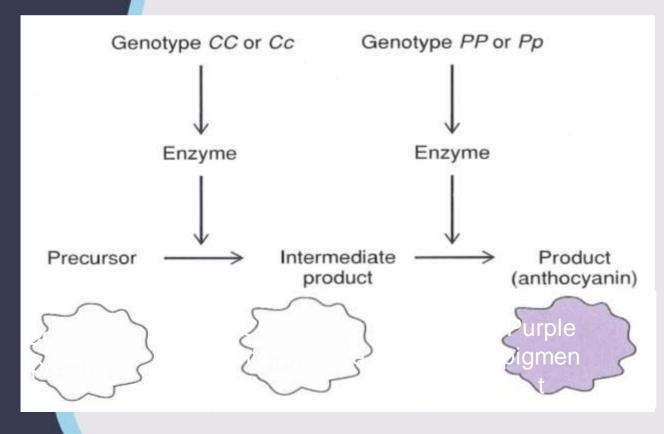
Substrate A

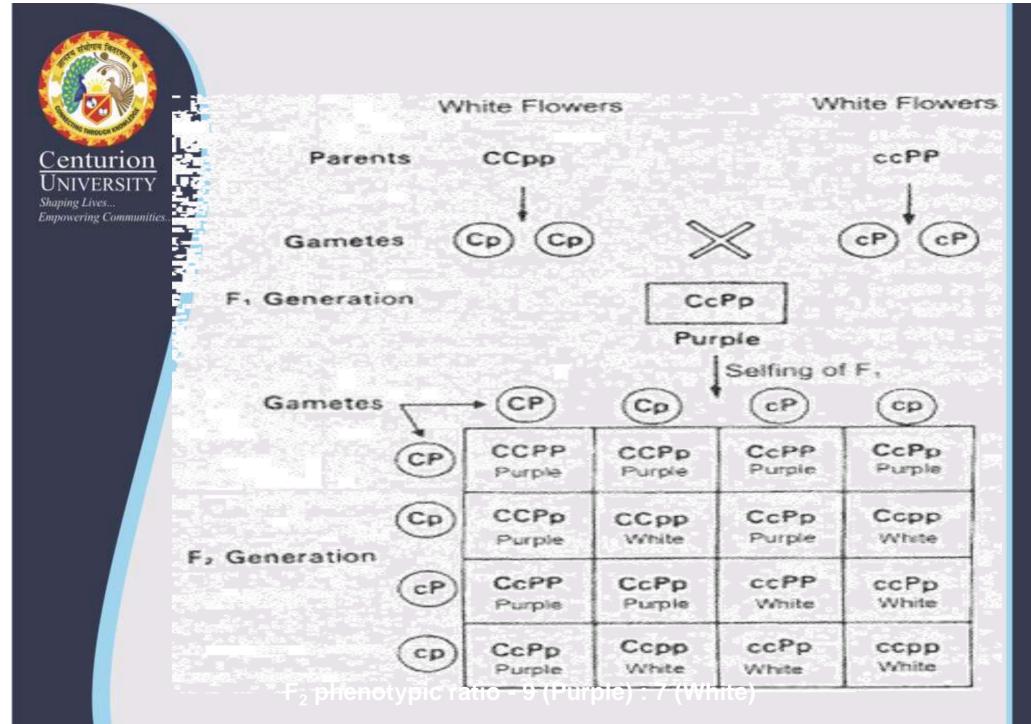

Substrate B

Anthocyani (Purple)

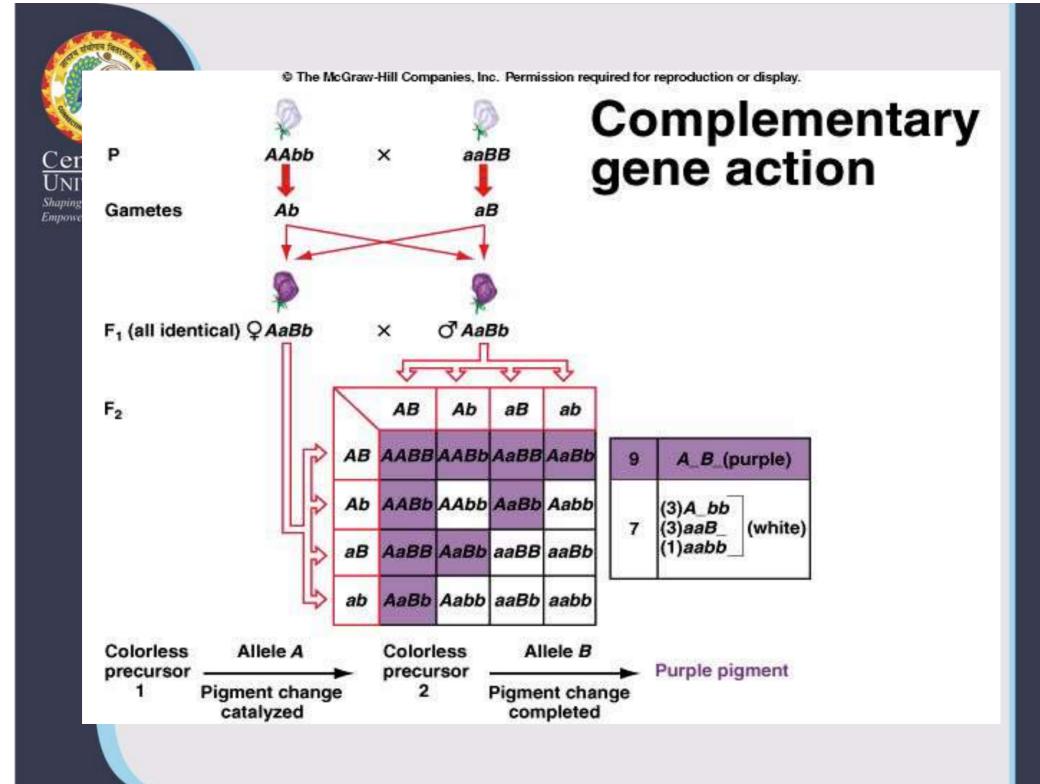
Therefore, if a plant has ccPP, ccPp, CCpp or Ccpp genotypes, it bears only white flowers. Purple flowers are formed in plants having genotype CCPP or CCPp or CcPP or CcPP or CcPp. From checker board, it is clear that **9 : 7 ratio** between purple and white is a modification of 9:3:3:1 ratio.

Genetic Express Parents : AAb White P.gametes Ab Centurion UNGametes Fe Shaping Lives	AaBb	aaBB White aB	COMPLEMENTAY GENES KESHARI Purple
	Ab aB	ab	AB- Purple-1,2,3,4.5.7.9,10,13= 9 Where both (A) and (B) are
AB AB 1	AB AbAB aB	3 AB ab 4	<pre>present flowers are coloured (when A is complemented by B then only flower is coloured)</pre>
Ab AB 5	Ab Ab AbAb aB	7 Ab 8	Where either (A) or (B) is present colour is white Ab- White- 6,8,14 = 3
aB AB 9	aBaBAb 10aB	11 ab 12	aB- White – 11,12,15 = 3 ab- White -16 = 1
ab AB 13	B Ab 14 AB	15 <mark>ab</mark> 15 ab 16	Total white- 3+3+1=7 So the ratio becomes 9:7
			(Purple : White)


F2 Generation



Complementary gene action - interactions arise because the two genes encode proteins that participate in sequence in a biochemical pathway


Shaping Lives... Empowering Communities...

Enzyme C and enzyme P cooperate to make a product, therefore they complement one another

Results of an experiment showing inheritance of flower colour in Lathyrus odoratus **control**led by complementary genes

Duplicate genes

If the dominant alleles of two gene loci produce the **same** phenotype, whether inherit together or **separately**, the 9 : 3 : 3 : 1 ratio is modified into a 15 : 1 ratio.

The capsules of shepherd's purse (Capsella) occur in two different shapes, i.e., triangular and top-shaped. When a plant with triangular capsule is crossed with one having top-shaped capsule, in F_1 only triangular character appears. The F_1 offspring by self crossing produced the F_2 generation with the triangular and topshaped capsules in the ratio of 15 : 1.

Only those with the genotype aabb would produce plants with top - shaped capsules.

DUPLICATE GENES

Same effect is given by either of two genes (A) or (B) Example is Capsella bursa -pastoris (Shepherd's Purse) Fruit shape of two types a)entriangular (Heart shape) capsule

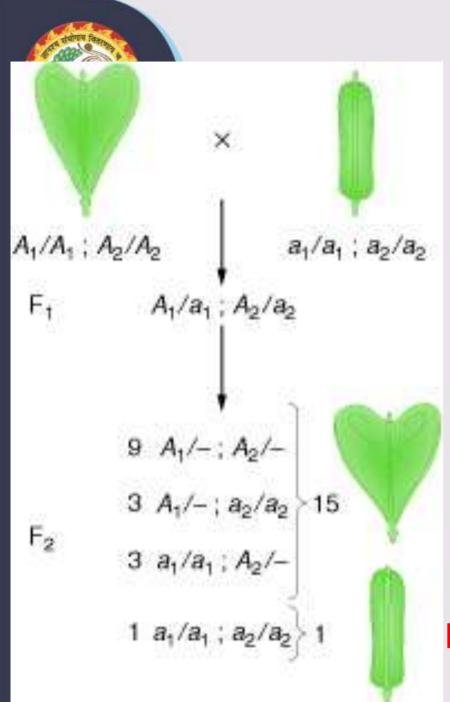
b)NTopsshaped (Narrow) capsule

Genetic Expression

Parents AABB Triangular P gametes AB F1 (Hybrid) AaBb

Top shaped ab

aabb


Х

triangular ______

		-	-	
F1 gametes	AB	Ab	aB	ab
AB	AB	AB	AB	AB
	AB 1	Ab 2	aB 3	ab 4
Ab	Ab	Ab	Ab	Ab
	AB 5	Ab 6	aB 7	Ab 8
aB	aB	aB	aB	aB
	AB 9	Ab 10	aB 11	ab 12
ab	ab	ab	ab	<mark>ab</mark>
	AB 13	Ab 14	aB 15	ab 16

AB- 1,2,3,4,5,7,9,10,13=9 (Triangular) Ab-6,8,14=3(Triangular) aB-11,12,15 = 3 (Tringular) ab-16 = 1 (top shaped) So the ratio is 15:1 This is example of gene interaction, two genes involved in same pathway. It is based on the idea that some genes may be present more than once in the genome

F2 generation 15 (Triangular): 1 (Top)

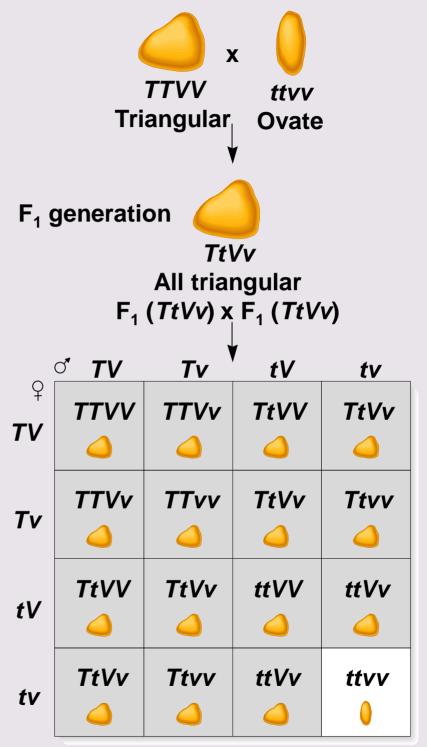
A_ or B_ = heart shape

aa and bb = narrow shape

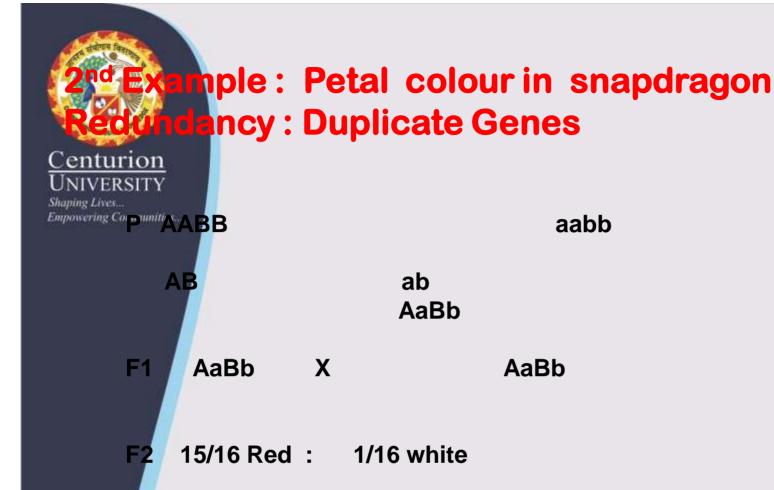
Fruit shape in Shepherd's purse

Duplicate Dominant Epistasis

Contarcross between two lines differing in fruit shape (Heart shape vs narrow) /ERSITY Shap F1 shaped like intragenic dominance but F2 generation shows a ratio of 15:1 and not 3:1 as that of monohybrid cross. It means that trait fruit shape is controlled by two genes (A and B) and their Alleles a and b. 15 :1 ratio is therefore modification of dihybrid ratio 9:3:3:1 in which 9,3 and 3 are grouped. The triangular shape results by the presence of at least one dominant allele of either gene. The two gene appear to be identical in function and is in contrast with complemenatary genes or 9:7 ratio where both dominant alleles are required for a phenotype and they complement each other.


Duplicate genes provide alternative genetic determination of a specific phenotype

15:1 ratio results


Shepherd's Purse (Capsella)

Fruit Shape Triangular / Top (Ovate) shape

<u>Centurión</u> UNIVERSITY	rents	Triang AAI		Top-shap aabb	
E,			AaBl Triang Selfing	ular	
, Gamet	es	> AB	Ab	aB	ab
· ·	ÅВ	AA BB Triangular	AA Bb Triangular	AA Bb Triangular	Aa Bb Triangular
F ₂	Ab	AA Bb Triangular	AA bb Triangular	AA bb Triangular	Aa bb Triangular
Generation	aB	Aa BB Triangular	Aa Bb Triangular	Aa Bb Triangular	aa Bb Triangular
	ab	Aa Bb Triangular	Aa bb Triangular	Aa bb Triangular	aa bb Top shaped

F₂ phenotypic ratio : 15 (triangular) : 1 (Top shaped

Whenever a dominant gene is present, the trait is expressed. One allele is sufficient to produce the pigment.

Polymeric gene action 9:6:1

Two completely dominant genes controlling a character produce same enotype, when their dominant alleles are alone, But when dominant alleles are together, the phenotypic effect is enhanced and become cumulative or additive effect

Example -1 Awn length on Barley fruit

AABB x aabb

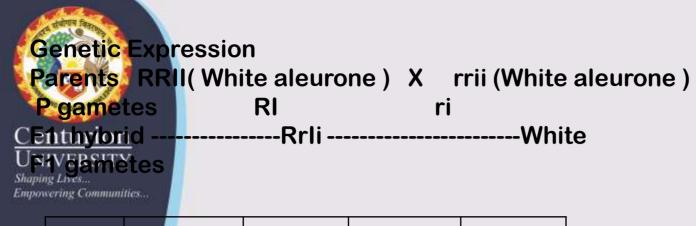
A /B- Median Awn A & B – long Awn ab- Awnless

Example-2 Fruit shape Squash (Disc/Circular/Long) 9:6:1 AaBb X AaBb **9 A B** – Disc 3 A-bb – Circular **3 aa-B-** Circular 1 aabb – Long

	Example	awn Ier	ngth on Ba	arley fru	iit AB-N	/ledian Awn
	The Theouse State	long Aw	'n	ab-	Awnless	
	UNIVERSITI	AA <mark>BB</mark> (Lo	ong awn) AB AaBb	Х	ab	Awnless) o ong awn
J	F1 gametes	AB AB AB 1	Ab AB Ab 2	aB AB aB 3	ab AB ab 4	AB – Long Awn -1,2,3,4 Ab- Medium Awn -6,8
	Ab	Ab AB 5	Ab Ab 6	Ab aB 7	Ab Ab 8	aB- medium Awn-11,1 ab-Awnless-16=1
	аВ	aB AB 9	aB Ab 10	aB aB 11	aB ab 12	
	ab	ab AB 13	ab Ab 14	ab aB 15	ab ab 16	

,4,5,7,9,10,13=9 8,14=3 12,15=3

F2 Generation : Phenotypic ratio **9(Long) : 6(Medium) :1(awnless)**



INHIBITORY GENE ACTION

ry gene action Example Maize Aleurone colour 13:3

One dominant gene produces concerned phenotype and its recessive allele produces contrasting phenotype. The second gene (dominant) has no effect on concerned phenotype but stops expression of dominant allele of first gene, so when both dominant alleles are present phenotype as that of recessive homozygote is produced

. Genetic Expression Parents RRII(White aleurone) X rrii (White aleurone) P gametes RI ri F1 hybrid ------Rrli ------White F1 gametes

	RI	Ri	rl	ri
RI	RIRI	Ri RI	rl Rl	ri RI
Ri	RI Ri	Ri Ri <mark>Red</mark>	rl Ri	ri Ri <mark>Red</mark>
ri	RIrl	Ri rl	rl rl	rirl
ri	RI ri	Ri ri <mark>Red</mark>	rl ri	ri ri

RI-White-1,2,3,4,5,7.9.10,13=9 Ri- Red- 6,8,14=3 rI- white -11,12,15=3 ri-white-16=1 So phenotypic Ratio becomes 13 (White) : 3 (Red)

Inhibitory gene action Example Maize Aleurone colour 13:3

Example 13:3

Centurion

INInhibitory gene (one gene inhibits expression of the other) 13:3

Shaping Lives... Empowers Communities – Feather colour in Fowl (White/Coloured)

Epistasis

- AaBb X AaBb
- 9 A B white
- 3 A-bb –white
- 3 aa-B- coloured
- 1 aabb –white

B is responsible for colour but in presence of A cannot express

Masking gene action (12:3:1)

Denturion Denturing Lives. Shaping Lives. when "they "are alone, but when dominant alleles of both genes are present together , expression of dominant allele of one gene masks the expression of other and when both genes are present in recessive state , a different phenotype is produced **Example Barley seed colour –Black/Yellow/White**

ParentsBByy (Black)XbbYY (Yellow)P gametesBybYF1 (Hybrid)BbYyBlackF1 gametes

urion RSITY S Communities	P gam F1 (H		Black) X Sy BbYy	bbYY (Ye bY	ellow) Black
	BY	Ву	bY	by	BY – Black -
вү	BY BY	By BY	bY BY	by BY	1,2,3,4,5,7,9,10,13 By -Black- 6,8,14=3
Ву	By BY	By By	bY By	by By	bY- Yellow-11,12,15 by-white-16=1
bY	bY BY	bY By	bY bY	by bY	
by	by BY	by By	by bY	by by	

C U

Sh En

When both B and Y are present both express but Black colour is so intensive that yellow colour produced by Y is not detected

B gives Black colour, Y gives Yellow colour and **b** and y donot produce colour

THANK YOU