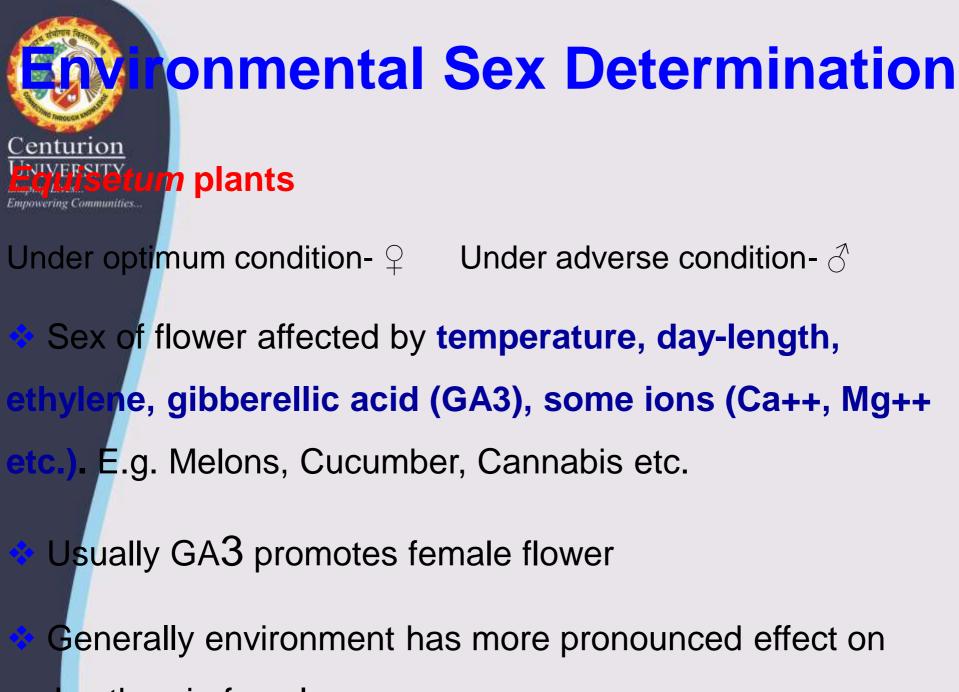


Lecture -7Sex determination, Sex linked, Sex influenced and Sex limited traits by **Dr. Praveen Kumar** Asst. Prof. GPB MSSSoA, CUTM, Odisha


Sex Determination in Plant

Three mechanisms

Environmental

Chromosomal and

Genic Mechanism

males than in females.

Chromosomal Sex determination

nseveral plant species Sex is determined on the basis of sex chromosome morphology

Homomorphic

Heteromorphic

Species	Features of Y chromosomes	Mechanism of sex determination		
1. Homomorphic sex chromosome				
A. Homogametic (XX) - Female, Heterogametic (XY)- Male				
Aspa <mark>ra</mark> gus officinalis	Similar to X chromosome	Y- active (?)		
Spin <mark>a</mark> cca oleracea	Similar to X chromosome	Y- active (?)		
B. Heterogametic (XY)- Female, Homogametic (XX) - Male				
<i>Fra<mark>g</mark>aria elateria</i> (Wi <mark>ld</mark> strawberry)		May be genic		

Species	Features of Y chromosomes	Mechanism of sex determination		
1. Heteromorphic sex chromosome				
ANHomogametic (XX) - Female, Heterogametic (XY)- Male				
Empowering Communities Cannabis sativa	Large	X/ autosome balance		
Coccinia in <mark>d</mark> ica	Large, Heterochromatic	Y- active		
Humulus l <mark>u</mark> pulus	Small, euchromatic	X/ autosome balance		
Rumex hastatulus	Large, euchromatic	X/ autosome balance		
Salina latifolia	Large, euchromatic	Y- active		
Salina latifolia Salina dioica	Large, euchromatic Large, euchromatic	Y- active Y- active		
	Large, euchromatic			
Salina dioica	Large, euchromatic			
Salina dioica B. XX- Female, XY1Y2 -	Large, euchromatic Male	Y- active		
Salina dioica B. XX- Female, XY1Y2 - Humulus japonicus	Large, euchromatic Male Large, Heterochromatic Large, euchromatic	Y- active X/ autosome balance Active Y and X/		
Salina dioica B. XX- Female, XY1Y2 - Humulus japonicus Rumex hastatulus	Large, euchromatic Male Large, Heterochromatic Large, euchromatic	Y- active X/ autosome balance Active Y and X/		

SEX DETERMINATION IN MELANDRIUM

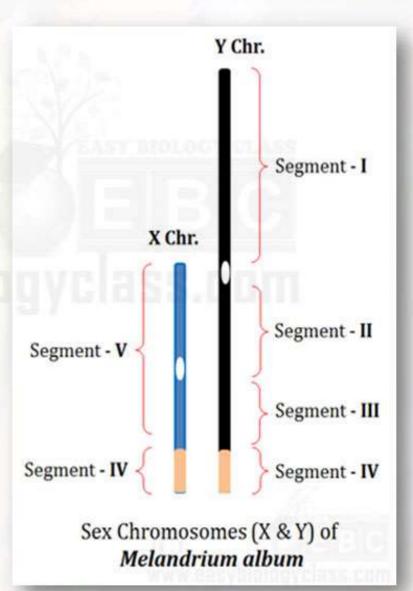
Sex determination in plants

- Majority flowering plants are monoecious
- Only about 6% of Angiosperms are dioecious
- Studies of sex determination mechanisms were done in very few plants
- Example: Coccinia, Asparagus and Melandrium
- Melandrium album or Silene latifolia (synonym) is a dioecious plant
- It is model plant in genetics for sex determination studies of plants
- Melandrium belongs to the Family Caryophyllaceae.
- Diploid chromosome number of *Melandrium album* is 24 (n = 12)

SEX DETERMINATION IN MELANDRIUM

Sex determination in Melandrium album

- Melandrium album shows sex chromosomal sex determination
- Have X & Y sex chromosomal constitution similar to Drosophila and Human
- Mechanism of sex determination is different from the usual XX XY system
- In Melandrium album:
 - AAXX individuals will be females
 - AAXY individuals will be males


Melandrium album (syn Silene latifolia)

SEX DETERMINATION IN MELANDRIUM

Structure of X and Y chromosomes in Melandrium album

- As in the picture, the X and Y chr. have a common segment (segment IV)
- This segment is used for homologous pairing during meiosis
- Remaining Y chromosome has three parts
- They are named as segment I, II and III
- Similarly, the remaining X chromosome has one segment called segment V

culture Fager	
chromosome	Outcome
CentuFiemale Suppressor Region	Bisexual Flower
Shaping Hes. Male promoter Region	Asexual Flower
III. Male Fertility Region	Male Sterile Flower
IV. Pairing Region	Irregular separation of X and Y chromosome at AI of meiosis

In S. latifolia single Y is able to produce fertile male flower even in the presence of 4 X chromosomes (XXXXY)

In mammals, where single gene SRY regulates sex determination, at least two genes are necessary for sex determination in plants: one gene suppress carpel development, while other gene is essential for stamen development.

Genic Sex Determination

Empowering Company and dioecious plants

Sex determination may depends on a single or several genes.

✤Eg. Papaya, Vitis, cineria etc.

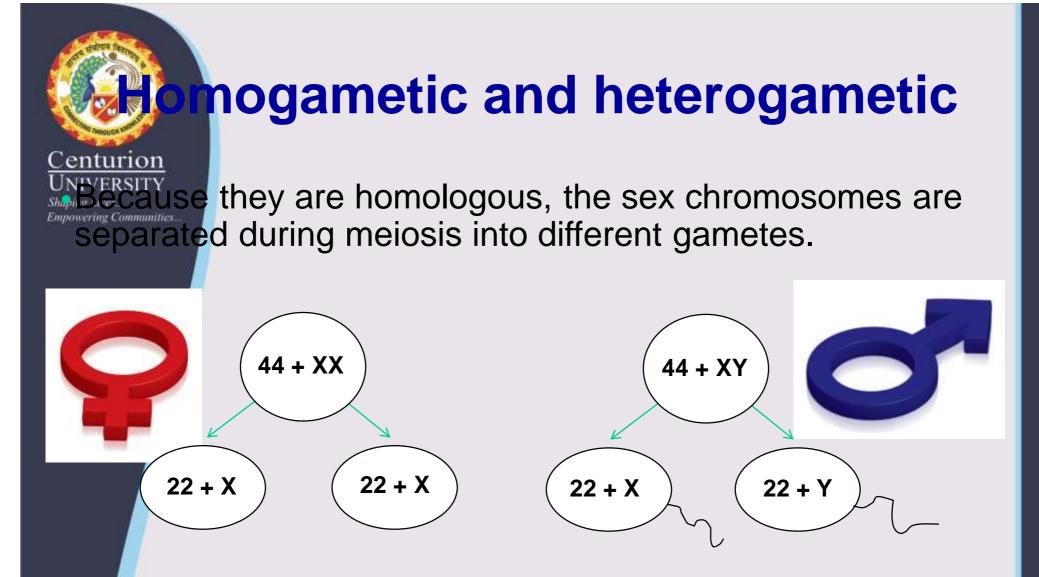
1. Single Gene Sex Determination- eg. In papaya single gene with three alleles.

Multigenic Sex Determination- eg. Annual mercury plant (*Mercurialis annua*), sex is determined by three different genes.

Inheritance or a number of traits, gene expression differs in males and females The causes fall under 3 categories: Sex-Linked Sex-Limited Sex-Influenced

SEX LINKED INHERITANCE

The characters for which genes are located on sex or **Chromosomes which occurs in different numbers** in two sexes and the absence of its allele in the 'Y' chromosome are known as sex linked traits.


- * Such genes are called sex linked genes and linkage of such genes is referred to as sex linkage.
- * Inheritance of such genes or characters is known as sex linked inheritance.
- Clear-cut explanation for this phenomenon was presented by T.H. Morgan in *Drosophila* for a recessive gene 'w' responsible for white eye colour

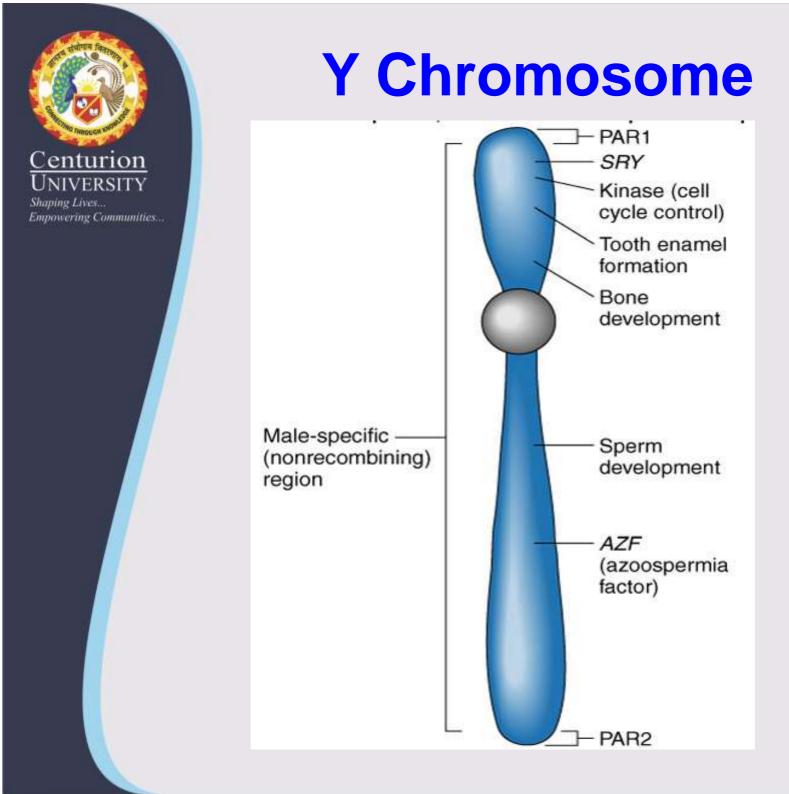
X and Y are homologous chromosomes

to the homology definition.

- Human X-chromosome is larger than Y and has about 2000 genes compared to about 450.
- X and Y are homologous because they pair up during meiosis I.
 - Pairing is due to a small area of homology around the centromere.

- The Y-chromosome lacks many genes found on its homologous X-chromosome.
- This leads to a pattern of inheritance called sex linkage.
- In XX females, a recessive allele on one X can be masked by a dominant allele on the other X.
- In XY males, a recessive allele on the X has no second copy to mask its effects.

- Human females produce all gametes with the same combination of chromosomes = homogametic.
- Human males produce gametes with two possible combinations of chromosomes = heterogametic.


Sex Chromosomes

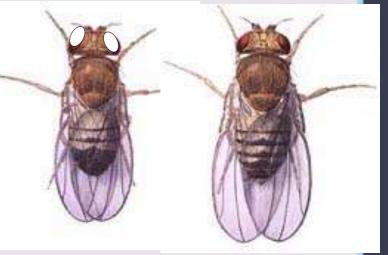
Shaping Les...

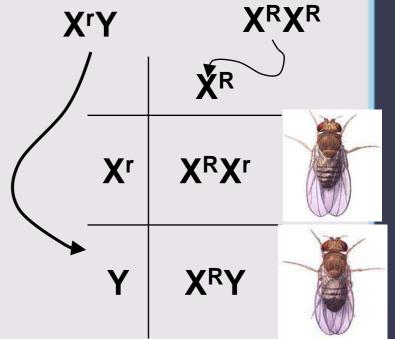
Contains ~90 genes

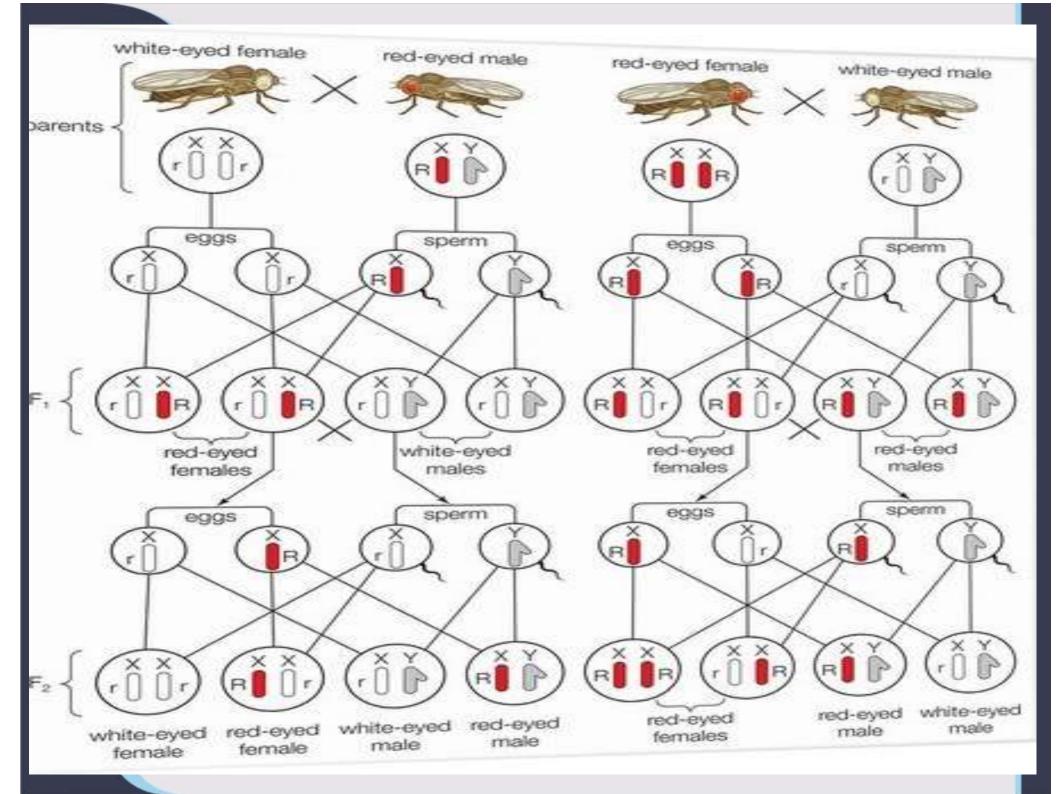
- Majority of genes = Male Specific Region (MSR)
- SRY gene determines "maleness"
- X chromosome:
 - Contains ~2000 genes
 - Some dealing with sexual development

Most genes encoding proteins that have nothing to do with sex

SRY Gene SRY = Sex-determining Region of Y A transcription factor (TF) **TF's** are genes that control the expression of other genes (turn on/off) SRY turns on "male" genes "Male" genes activate male hormones (testosterone) end up producing male structures Also, destroy female structures


Sex linkage- White-eyed males


In the early 1900s, T. H. Morgan studied inheritance in *Drosophila melanogaster* to try to disprove Mendel's theory of the 3:1 ratio


 It took two years to find any variation in his vast fly breeding programme.

enturion

- Eventually a male fly was found which had white eyes. (His wife found it.)
- This white-eyed male was crossed with a normal red-eyed female.
- We will use the notation **X**^R to show the red eye allele is on the X-chromosome and is dominant to white eye, **X**^r.

Conclusion

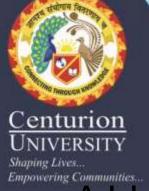
Empowering Communities...

entoriowhite eye gene was located on 'X' chromosome of Drosophila

Y-chromosome does not carry an allele for this gene.

* Female flies will have two copies of w gene (WW, Ww or ww, while male will have only one copy (W or w) i.e hemizygous for w

his was first conclusive evidence demonstrated that a specific gene located in a specific chromosome of an brganism


exinkage in human and other organism

Mice, Cat, insect, Poultry, Cattle, Guinnea pig etc.

Empowering Communities...

In human over 200 genes exhibited sex linkage and most of these causes genetic diseases

Sex linked trait in humen	Effect
1. Hemophilia	Inability of blood to clot
2. Colour blindness	Inability to perceive one or the other colour
3. Optic atrophy	Degeneration of optic nerve
4. Juvenile glaucoma	Hardening of eye ball
5. Myopia	Nearsightedness
6. Mitral stenosis	Abnormality in mitral valve in the heart

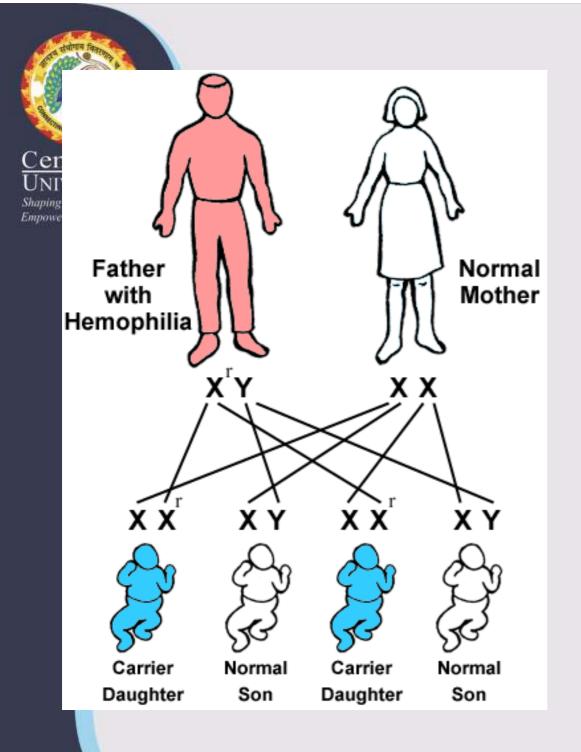
Hemophilia

- A blood disorder where the blood does not clot properly.
- A minor cut can cause serious injury and demand medical attention.
- Bleeding into the joints, internal bleeding and deep cuts can be fatal for hemophiliacs.
- Genetic lack of one of the clotting factors produced by the liver.
- There is no cure for hemophilia but treatment options with clotting factor transfusions are available.

Complications from hemophilia include: bruising and bleeding into the muscles, bleeding into the joints, infection, adverse reaction to transfusions and serious bleeding.

Genetics of Hemophilia

- The gene for hemophilia is found on the X chromosome
- It is a recessive disorder.


enturion

Empowering Communities...

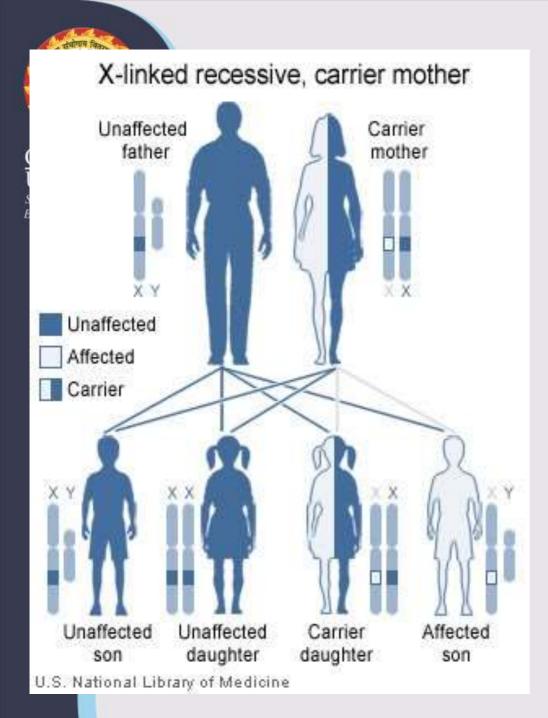
ERSITY

 It is referred to as a sex-linked recessive disorder. •Males are more likely to get hemophilia.

•Females have the possibility of being heterozygous for hemophilia. (This makes them a carrier)

In this example: The father has hemophilia. He cannot give his son hemophilia because he gives his son the Y chromosome.

He can give his daughter the recessive gene, but if her mother does not give her the recessive gene, she will not have hemophilia. She will be a carrier.


Centurion UNIVERSITY Shaping Lives... Empowering Communities..

Males are more likely to be color blind due to the fact they only have one X chromosome.

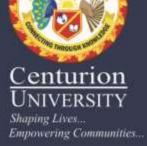
Color Blindness
 is a sex-linked
 trait found on the
 X chromosome.

Color Blindness

In this example: the mother is a carrier of the colorblind gene. There is a 50% chance her son will be colorblind but unless the father is colorblind the daughter cannot end up colorblind.

Sex-Linked Inheritance- Punnett Square

In the punnett square the mother is a carrier and the father is normal.


• Male offspring: 50% normal & 50% hemophiliac

enturion

Empowering Communities..

VERSITY

• Female offspring: 50% normal 50% carrier

Complete the following punnett square:

Cross a normal mother with a hemophiliac father.

Results:

Genotypes: 50% Phenotypes: 50% 50% 50%

ex-Influence Inheritance

senes are inherited from both parents

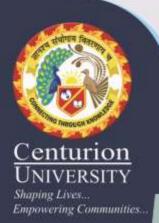
- Empowering Communities...
 Either autosomal or X chromosome
- Modes of gene expression differ between males & females
- An algebra has a compared as a dominant in one sex and a recessive in the other

Male pattern baldness

- Scurs (degrowing of horn after disbudding operation) on cattle is a sex-influenced inheritance
- The allele for scurs is dominant in males and recessive in females
- A male with one copy will be scurred, but a female must have 2 copies

A TON		
Genotype	Males	Females
Densision UNIVERSITY	Polled	Polled
PPSS	Polled	Polled
PP ss	Polled	Polled
Pp SS	Scurs	Scurs
Pp Ss	Scurs	Polled
Pp ss	Polled	Polled
pp <mark>SS</mark>	Horned	Horned
pp <mark>S</mark> s	Horned	Horned

Sex-Limited inheritance


Genes are inherited from both parents

Either autosomal or X chromosome

- Yet, affect a structure that is only present in one sex, therefore phenotype shows a sex "difference"
 Horns
 - Milk production
 - Genitalia anatomy/function

These genes are not necessarily on the sex chromosomes but are only expressed in the male or female

Thought to be hormonally conditioned

THANK YOU