Ionic Liquids: Classification, Synthesis and Application

Dr. Pratap Chhotaray

Volatile Organic Compounds (VOCs)

✤ VOCs have high vapour pressure Drawbacks of VOCs ** air pollution ozone depletion global warming \succ climatic changes human health-related problems. \succ ✤ VOCs are mainly used as solvents that play

a crucial role in many areas of technology

Solvent Name	Boiling Point/°C
Acetone	56
Benzene	80
Chloroform	61
Diethyl ether	35
Ethanol	78
Dichloromethane	40
Hexane	69

Sources of VOCs

Best Approaches to Solvent Replacement

*No solvent

*Water

Supercritical fluids

Green Solvents

Ionic Liquids and *Deep Eutectic Solvents* are the two examples of *Green solvents*

All have their own advantages and disadvantages

Ionic Liquids (ILs)

Ionic Salts Vs Ionic Liquids

Crystal structure of NaCl

Melting Point = 801 °C

Crystal structure of [EMIM][NTf₂]

Melting point= -25.7 °C

CrystEngComm, 2006, 8, 742-745.

Characteristic Properties

ILs – Applications

www.iolitec.de

Classification of ILs

Synthesis of Protic Ionic Liquids (PILs)

Lactam ILs

BTF, BTAc, BTH, CPF, CPAc, CPH

n =1, Butyrolactam; n =3, Caprolactam; R = H, CH_3 , C_5H_{11}

