
44 Further Studies of Laplace Transform

Properties of the Laplace transform enable us to find Laplace transforms
without having to compute them directly from the definition. In this sec-
tion, we establish properties of Laplace transform that will be useful for
solving ODEs.

Laplace Transform of the Heaviside Step Function
The Heaviside step function is a piecewise continuous function defined by

h(t) =

{
1, t ≥ 0
0, t < 0

Figure 44.1 displays the graph of h(t).

Figure 44.1

Taking the Laplace transform of h(t) we find

L[h(t)] =

∫ ∞
0

h(t)e−stdt =

∫ ∞
0

e−stdt =

[
−e
−st

s

]∞
0

=
1

s
, s > 0.

A Heaviside function at α ≥ 0 is the shifted function h(t−α) (α units to the
right). For this function, the Laplace transform is

L[h(t− α)] =

∫ ∞
0

h(t− α)e−stdt =

∫ ∞
α

e−stdt =

[
−e
−st

s

]∞
α

=
e−sα

s
, s > 0.

Laplace Tranform of eat

The Laplace transform for the function f(t) = eat is

L[eat] =

∫ ∞
0

e−(s−a)tdt =

[
−e
−(s−a)t

s− a

]∞
0

=
1

s− a
, s > a.
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Laplace Tranforms of sin at and cos at
Using integration by parts twice we find

L[sin at] =
∫∞
0
e−st sin atdt

=
[
− e−st sin at

s
− ae−st cos at

s2

]∞
0
− a2

s2

∫∞
0
e−st sin atdt

= − a
s2
− a2

s2
L[sin at](

s2+a2

s2

)
L[sin at] = a

s2

L[sin at] = a
s2+a2

, s > 0

A similar argument shows that

L[cos at] =
s

s2 + a2
, s > 0.

Laplace Transforms of cosh at and sinh at
Using the linear property of L we can write

L[cosh at] = 1
2

(L[eat] + L[e−at])

= 1
2

(
1
s−a + 1

s+a

)
, s > |a|

= s
s2−a2 , s > |a|

A similar argument shows that

L[sin at] =
a

s2 − a2
, s > |a|.

Laplace Transform of a Polynomial
Let n be a positive integer. Using integration by parts we can write∫ ∞

0

tne−stdt = −
[
tne−st

s

]∞
0

+
n

s

∫ ∞
0

tn−1e−stdt.

By repeated use of L’Hôpital’s rule we find limt→∞ t
ne−st = limt→∞

n!
snest

= 0
for s > 0. Thus,

L[tn] =
n

s
L[tn−1], s > 0.
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Using induction on n = 0, 1, 2, · · · one can easily eastablish that

L[tn] =
n!

sn+1
, s > 0.

Using the above result together with the linearity property of L one can find
the Laplace transform of any polynomial.
The next two results are referred to as the first and second shift theorems.
As with the linearity property, the shift theorems increase the number of
functions for which we can easily find Laplace transforms.

Theorem 44.1 (First Shifting Theorem)
If f(t) is a piecewise continuous function for t ≥ 0 and has exponential order
at infinity with |f(t)| ≤Meat, t ≥ C, then for any real number α we have

L[eαtf(t)] = F (s− α), s > a+ α

where L[f(t)] = F (s).

Proof.
From the definition of the Laplace transform we have

L[eatf(t)] =

∫ ∞
0

e−steatf(t)dt =

∫ ∞
0

e−(s−a)tf(t)dt.

Using the change of variable β = s− a the previous equation reduces to

L[eatf(t)] =

∫ ∞
0

e−steatf(t)dt =

∫ ∞
0

e−βtf(t)dt = F (β) = F (s−a), s > a+α

Theorem 44.2 (Second Shifting Theorem)
If f(t) is a piecewise continuous function for t ≥ 0 and has exponential order
at infinity with |f(t)| ≤ Meat, t ≥ C, then for any real number α ≥ 0 we
have

L[f(t− α)h(t− α)] = e−αsF (s), s > a

where L[f(t)] = F (s) and h(t) is the Heaviside step function.

Proof.
From the definition of the Laplace transform we have

L[f(t− α)h(t− α)] =

∫ ∞
0

f(t− α)h(s− α)e−stdt =

∫ ∞
α

f(t− α)e−stdt.
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Using the change of variable β = t− α the previous equation reduces to

L[f(t− α)h(t− α)] =
∫∞
0
f(β)e−s(β+α)dβ

= e−sα
∫∞
0
f(β)e−sβdβ = e−sαF (s), s > a

Example 44.1
Find

(a) L[e2tt2] (b) L[e3t cos 2t] (c) L−1[e−2ts2]

Solution.
(a) By Theorem 44.1, we have L[e2tt2] = F (s − 2) where L[t2] = 2!

s3
=

F (s), s > 0. Thus, L[e2tt2] = 2
(s−2)3 , s > 2.

(b) As in part (a), we have L[e3t cos 2t] = F (s−3) where L[cos 2t] = F (s−3).
But L[cos 2t] = s

s2+4
, s > 0. Thus,

L[e3t cos 2t] =
s− 3

(s− 3)2 + 4
, s > 3

(c) Since L[t] = 1
s2
, by Theorem 44.2, we have

e−2t

s2
= L[(t− 2)h(t− 2)].

Therefore,

L−1
[
e−2t

s2

]
= (t− 2)h(t− 2) =

{
0, 0 ≤ t < 2

t− 2, t ≥ 2

The following result relates the Laplace transform of derivatives and integrals
to the Laplace transform of the function itself.

Theorem 44.3
Suppose that f(t) is continuous for t ≥ 0 and f ′(t) is piecewise continuous
of exponential order at infinity with |f ′(t)| ≤Meat, t ≥ C Then

(a) f(t) is of exponential order at infinity.
(b) L[f ′(t)] = sL[f(t)]− f(0) = sF (s)− f(0), s > max{a, 0}+ 1.
(c) L[f ′′(t)] = s2L[f(t)] − sf(0) − f ′(0) = s2F (s) − sf(0) − f(0), s >
max{a, 0}+ 1.

(d) L
[∫ t

0
f(u)du

]
= L[f(t)]

s
= F (s)

s
, s > max{a, 0}+ 1.
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Proof.
(a) By the Fundamental Theorem of Calculus we have f(t) = f(0)−

∫ t
0
f ′(u)du.

Also, since f ′ is piecewise continuous, |f ′(t)| ≤ T for some T > 0 and all
0 ≤ t ≤ C. Thus,

|f(t)| =
∣∣∣f(0)−

∫ t
0
f ′(u)du

∣∣∣ = |f(0)−
∫ C
0
f ′(u)du−

∫ t
C
f ′(u)du|

≤ |f(0)|+ TC +M
∫ t
C
eaudu

Note that if a > 0 then∫ t

C

eaudu =
1

a
(eat − eaC) ≤ eat

a

and so

|f(t)| ≤ [|f(0)|+ TC +
M

a
]eat.

If a = 0 then ∫ t

C

eaudu = t− C

and therefore

|f(t)| ≤ |f(0)|+ TC +M(t− C) ≤ (|f(0)|+ TC +M)et.

Now, if a < 0 then ∫ t

C

eaudu =
1

a
(eat − eaC) ≤ 1

|a|

so that

|f(t)| ≤ (|f(0)|+ TC +
M

|a|
)et

It follows that
|f(t)| ≤ Nebt, t ≥ 0

where b = max{a, 0}+ 1.

(b) From the definition of Laplace transform we can write

L[f ′(t)] = lim
A→∞

∫ A

0

f ′(t)e−stdt.
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Since f ′(t) may have jump discontinuities at t1, t2, · · · , tN in the interval
0 ≤ t ≤ A, we can write∫ A

0

f ′(t)e−stdt =

∫ t1

0

f ′(t)e−stdt+

∫ t2

t1

f ′(t)e−stdt+ · · ·+
∫ A

tN

f ′(t)e−stdt.

Integrating each term on the RHS by parts and using the continuity of f(t)
to obtain∫ t1

0
f ′(t)e−stdt = f(t1)e

−st1 − f(0) + s
∫ t1
0
f(t)e−stdt∫ t2

t1
f ′(t)e−stdt = f(t2)e

−st2 − f(t1)e
−st1 + s

∫ t2
t1
f(t)e−stdt

...∫ tN
tN−1

f ′(t)e−stdt = f(tN)e−stN − f(tN−1)e
−stN−1 + s

∫ tN
tN−1

f(t)e−stdt

∫ A
tN
f ′(t)e−stdt = f(A)e−sA − f(tN)e−stN + s

∫ A
tN
f(t)e−stdt

Also, by the continuity of f(t) we can write∫ A

0

f(t)e−stdt =

∫ t1

0

f(t)e−stdt+

∫ t2

t1

f(t)e−stdt+ · · ·+
∫ A

tN

f(t)e−stdt.

Hence, ∫ A

0

f ′(t)e−stdt = f(A)e−sA − f(0) + s

∫ A

0

f(t)e−stdt.

Since f(t) has exponential order at infinity,limA→∞ f(A)e−sA = 0. Hence,

L[f ′(t)] = sL[f(t)]− f(0).

(c) Using part (b) we find

L[f ′′(t)] = sL[f ′(t)]− f ′(0)
= s(sF (s)− f(0))− f ′(0)
= s2F (s)− sf(0)− f ′(0), s > max{a, 0}+ 1

(d) Since d
dt

(∫ t
0
f(u)du

)
= f(t), by part (b) we have

F (s) = L[f(t)] = sL
{∫ t

0

f(u)du

}
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and therefore

L
[∫ t

0

f(u)du

]
=
L[f(t)]

s
=
F (s)

s
, s > max{a, 0}+ 1

The argument establishing part (b) of the previous theorem can be extended
to higher order derivatives.

Theorem 44.4
Let f(t), f ′(t), · · · , f (n−1)(t) be continuous and f (n)(t) be piecewise continu-
ous of exponential order at infinity with |f (n)(t)| ≤Meat, t ≥ C. Then

L[f (n)(t)] = snL[f(t)]−sn−1f(0)−sn−2f ′(0)−· · ·−f (n−1)(0), s > max{a, 0}+1.

We next illustrate the use of the previous theorem in solving initial value
problems.

Example 44.2
Solve the initial value problem

y′′ − 4y′ + 9y = t, y(0) = 0, y′(0) = 1.

Solution.
We apply Theorem 44.4 that gives the Laplace transform of a derivative. By
the linearity property of the Laplace transform we can write

L[y′′]− 4L[y′] + 9L[y] = L[t].

Now since

L[y′′] = s2L[y]− sy(0)− y′(0) = s2Y (s)− 1
L[y′] = sY (s)− y(0) = sY (s)
L[t] = 1

s2

where L[y] = Y (s), we obtain

s2Y (s)− 1− 4sY (s) + 9Y (s) =
1

s2
.

Rearranging gives

(s2 − 4s+ 9)Y (s) =
s2 + 1

s2
.
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Thus,

Y (s) =
s2 + 1

s2(s2 − 4s+ 9)

and

y(t) = L−1
[

s2 + 1

s2(s2 − 4s+ 9)

]
In the next section we will discuss a method for finding the inverse Laplace
transform of the above expression.

Example 44.3
Consider the mass-spring oscillator without friction: y′′ + y = 0. Suppose
we add a force which corresponds to a push (to the left) of the mass as it
oscillates. We will suppose the push is described by the function

f(t) = −h(t− 2π) + u(t− (2π + a))

for some a > 2π which we are allowed to vary. (A small a will correspond
to a short duration push and a large a to a long duration push.) We are
interested in solving the initial value problem

y′′ + y = f(t), y(0) = 1, y′(0) = 0.

Solution.
To begin, determine the Laplace transform of both sides of the DE:

L[y′′ + y] = L[f(t)]

or

s2Y − sy(0)− y′(0) + Y (s) = −1

s
e−2πs +

1

s
e−(2π+a)s.

Thus,

Y (s) =
e−(2π+a)s

s(s2 + 1)
− e−2πs

s(s2 + 1)
+

s

s2 + 1
.

Now since 1
s(s2+1)

= 1
s
− s

s2+1
we see that

Y (s) = e−(2π+a)s
[

1

s
− s

s2 + 1

]
− e−2πs

[
1

s
− s

s2 + 1

]
+

s

s2 + 1
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and therefore

y(t) = h(t− (2π + a))
[
L−1

(
1
s
− s

s2+1

)]
(t− (2π + a))

− h(t− 2π)
[
L−1

(
1
s
− s

s2+1

)]
(t− 2π) + cos t

= h(t− (2π + a))[1− cos (t− (2π + a))]− u(t− 2π)[1− cos (t− 2π)]
+ cos t

We conclude this section with the following table of Laplace transform pairs.

f(t) F(s)

h(t) =

{
1, t ≥ 0
0, t < 0

1
s
, s > 0

tn, n = 1, 2, · · · n!
sn+1 , s > 0

eαt s
s−α , s > α

sin (ωt) ω
s2+ω2 , s > 0

cos (ωt) s
s2+ω2 , s > 0

sinh (ωt) ω
s2−ω2 , s > |ω|

cosh (ωt) s
s2−ω2 , s > |ω|

eαtf(t), with |f(t)| ≤Meat F (s− α), s > α + a

eαth(t) 1
s−α , s > α

eαttn, n = 1, 2, · · · n!
(s−α)n+1 , s > α

eαt sin (ωt) ω
(s−α)2+ω2 , s > α

eαt cos (ωt) s−α
(s−α)2+ω2 , s > α

f(t− α)h(t− α), α ≥ 0 e−αsF (s), s > a
with |f(t)| ≤Meat
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f(t) F(s) (continued)

h(t− α), α ≥ 0 e−αs

s
, s > 0

tf(t) -F ′(s)

t
2ω

sinωt s
(s2+ω2)2

, s > 0

1
2ω3 [sinωt− ωt cosωt] 1

(s2+ω2)2
, s > 0

f ′(t), with f(t) continuous sF (s)− f(0)
and |f ′(t)| ≤Meat s > max{a, 0}+ 1

f ′′(t), with f ′(t) continuous s2F (s)− sf(0)− f ′(0)
and |f ′′(t)| ≤Meat s > max{a, 0}+ 1

f (n)(t), with f (n−1)(t) continuous snF (s)− sn−1f(0)− · · ·
and |f (n)(t)| ≤Meat -sf (n−2)(0)− f (n−1)(0)

s > max{a, 0}+ 1∫ t
0
f(u)du, with |f(t)| ≤Meat F (s)

s
, s > max{a, 0}+ 1

Table L
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Practice Problems

Problem 44.1
Use Table L to find L[2et + 5].

Problem 44.2
Use Table L to find L[e3t−3h(t− 1)].

Problem 44.3
Use Table L to find L[sin2 ωt].

Problem 44.4
Use Table L to find L[sin 3t cos 3t].

Problem 44.5
Use Table L to find L[e2t cos 3t].

Problem 44.6
Use Table L to find L[e4t(t2 + 3t+ 5)].

Problem 44.7
Use Table L to find L−1[ 10

s2+25
+ 4

s−3 ].

Problem 44.8
Use Table L to find L−1[ 5

(s−3)4 ].

Problem 44.9
Use Table L to find L−1[ e−2s

s−9 ].

Problem 44.10
Use Table L to find L−1[ e

−3s(2s+7)
s2+16

].

Problem 44.11
Graph the function f(t) = h(t − 1) + h(t − 3) for t ≥ 0, where h(t) is the
Heaviside step function, and use Table L to find L[f(t)].

Problem 44.12
Graph the function f(t) = t[h(t− 1)− h(t− 3)] for t ≥ 0, where h(t) is the
Heaviside step function, and use Table L to find L[f(t)].
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