

Sprinkler Irrigation - Pipeline Hydraulics

Sprinkler and Micro irrigation Systems

Pressure and Head Relationship

- In an Irrigation system, the head consists of following components
- Static head: simply the difference in elevation between the highest discharge point in the system and that point
- Pressure head: pressure at that point divided by unit weight of water.
- Velocity head: head required to accelerate the water from rest to the velocity at that point.
- Friction head: energy required for water to flow between two points at same elevation.
- Elevation above datum: distance of a given point in the system above some arbitrary datum.

Calculation of Pipe Friction

Darcy-Weisbach equation

- $h_{f}=F_{f} \frac{L}{D} \frac{V^{2}}{2 g}$
- $h_{f}=$ head loss due to pipe friction (m)
- $F_{f}=$ Darcy-Weisbach pipe friction factor
- $V=$ velocity of flow in the pipe (m / s)
- $g=$ acceleration due to gravity $\left(\mathrm{m} / \mathrm{s}^{2}\right)$
- $D=$ inside pipe diameter (m)
- $F_{f}=\frac{64}{R_{y}}$ for $R_{y}<2000$
- $F_{f}=0.32 R_{y}{ }^{-0.25}$ for $2000 \leq R_{y} \leq 10,000$
- $\mathrm{R}_{\mathrm{y}}=$ Reynold's number

Calculation of Pipe Friction

Watters and Keller (1978)

- $J=\frac{100 h_{f}}{L}=K \frac{Q^{1^{1.75}}}{D^{4.75}}$ for use with smooth pipes less than $125 \mathrm{~mm} \emptyset$
- $K=$ conversion constant (7.89×10^{7}, for metric units)
- $J=\frac{100 h_{f}}{L}=K \frac{Q^{1.83}}{D^{4.83}}$ for use with smooth pipes more than $125 \mathrm{~mm} \emptyset$
- $\mathrm{K}=$ conversion constant $\left(9.58 \times 10^{7}\right.$, for metric units)

Friction losses for pipes with outlets

- More frictional loss in a closed pipeline of given length, than that with a pipe having equally spaced outlets.
- This is because the volume of flow decreases each time an outlet is passed

Calculation of Pipe Friction

Friction losses for pipes with outlets

- A method developed by Christiansen (1942), for computing head or pressure loss in multiple outlet pipeline.
- Involves computing the friction loss in the line without outlet and then multiplying a factor \boldsymbol{F}.
- Thus head loss becomes: $h_{f}=J F \frac{L}{100}$

Reduction coefficient, F, for multiple-outlet pipelines

Number of outlets	F		Number of outlets	F	
	(end) ${ }^{1}$	$(\mathrm{mid})^{2}$		(end)	(mid)
1	1.00	1.00	8	0.42	0.38
2	0.64	0.52	9	0.41	0.37
3	0.54	0.44	10-11	0.40	0.37
4	0.49	0.41	12-15	0.39	0.37
5	0.46	0.40	16-20	0.38	0.36
6	0.44	0.39	21-30	0.37	0.36
7	0.43	0.38	≥ 31	0.36	0.36

Lateral Inlet Pressure

- The general equation for the lateral inlet pressure (pressure required at the mainline end) is:
- $P_{l}=P_{a}+\frac{3}{4} P_{f}+\frac{1}{2} \Delta P_{e}+P_{r}$

And

- $H_{l}=H_{a}+\frac{3}{4} h_{f}+\frac{1}{2} \Delta H_{e}+H_{r}$
- $P_{l}=$ lateral inlet pressure (kPa)
- $P_{f}=$ pressure loss due to pipe friction (kPa)
- $P_{r}=$ pressure required t lift the water up the riser $(9.8 \mathrm{kPa} / \mathrm{m})$
- $H_{l}=$ lateral inlet pressure head (m)
- $H_{a}=$ average sprinkler operating pressure head (m)
- $h_{f}=$ head loss due to pipe friction (m)
- $\Delta H_{e}=$ static pressure difference between the inlet and closed ends due to elevation difference
- $H_{r}=$ height of riser (m)

Lateral Inlet Pressure

(A) Lateral laid uphill - minimum pressure occurs at closed end.

(B) Lateral laid down hill - minimum pressure occurs when pipe friction gradient equals slope.

(C) Lateral laid uphill with flow-or pressure. control valves- minimum equals average pressure.

Main Line Pipe Size

- The function of mainline and sub-mains is to convey the required quantity of water at desired pressure to all laterals under maximum pressure conditions.
- Friction loss of 3 m for small system and 12 m for large system may be allowed.

A nomograph showing hydraulic gradient in $\mathrm{m} / 100 \mathrm{~m}$ length \Longrightarrow

Pumps and Power Units

- In selecting a suitable pump, it is necessary to determine the maximum total head against which the pump is working.
- This may be determined by:
- $H_{t}=H_{n}+H_{m}+H_{j}+H_{s}$
- $\mathrm{H}_{\mathrm{t}}=$ total design head against which the pump is working
- $\mathrm{H}_{\mathrm{n}}=$ maximum head required at the main to operate the sprinkler
- $\mathrm{H}_{\mathrm{m}}=$ maximum friction loss in the main and in the suction line
- $\mathrm{H}_{1}=$ elevation difference between the pump and the junction of lateral and the main
- $\mathrm{H}_{\mathrm{n}}=$ elevation difference between the pump and source of water after drawdown

N!! Thank

