

Micro Irrigation Systems - Design

Sprinkler and Micro irrigation Systems

https://slideplayer.com/slide/13173599/

Pumping Set

• To create a pressure about 2.5kg/sq.cm to regulate the amount of water to be supplied

<u>Filter Unit</u>

• To filter the water in order to remove the suspended impurities from the water.

<u>Mainlines</u>

- It is a Distribution system in drip irrigation. Rigid PVC and high density polyethylene pipes are used as main pipes to minimized corrosion and clogging
- Pipes of 65 mm Ø and with pressure rating of 4 to 10 kg/sq. cm

Sub-main

- It is usually connected to the main lines through a control valve assembly
- The function of its to distributes water uniformly to a number laterals

Drippers and Emitters

- It is fitted to a drip irrigation lateral and intended to emit water in the form of drops or continuous f low at emitter rates not exceeding 15 liters/hr
- Drippers function as energy dissipated, reducing the inlet pressure head in the lateral, which generally range from 0.3 to 1.5 atmosphere

Design of Drip Irrigation System

Data Collection

- Types of soil
- Infiltration characteristics of soil
- Types of crop
- Consumptive use of water by crops
- Water quality
- Climate condition
- Availability of funds
- Contour map

Design Procedure

- Prepare on inventory of available resources & operating conditions
- Determine the water requirement to be met by the drip system
- Determine the appropriate type of system
- Determine the type and design of emitters
- Determine the capacity of pumping system
- Decide on the economic sizes of the pumping system
- Determine the maximum and minimum operating pressure and the minimum efficiency required
- Determine the appropriate filtering system
- Determine the requirement of the fertilization system
- Plan field evaluation
- Prepare drawings, specification, cost ,schedules, installation, operations, maintenance.

Emitter Selection

- The efficiency Of Drip irrigation system depends mainly on the selection of the type of emitter and its design.
- Characteristic of emitter that influence the efficiency of irrigation system is Discharge rate
- Critical items in emitter selection are the % area wetted(Pw) and the emitter reliability .
- The density of emission points required to obtain $Pw \geq 33\%$.

Emitter Selection

Manufacturing Variation in Emitter:

- $C_v = \frac{S}{Q}$ = $(q_1^2 + q_2^2 + \dots + q_n^2 - nq^2)^{0.5}/q(n-1)^{0.5}$
- C_{v} = emitter coefficient of manufacturing variation,
- $q_1, q_2, ..., q_n$ = individual emitter discharge rate values, N = Number of emitter in sample
- Q = Average discharge rate of the emitters sampled,
- S = Standard deviation of the discharge rates of the sample.

Emitter Selection

<u>Recommended ranges of C_v </u>

• Emitter coefficient of manufacturing variation

<0.05	Excellent
0.05 to 0.07	Average
0.07 to 0.11	Marginal
0.11 to 0.15	Poor
> 0.15	unacceptable

Discharge of Drippers

- $q = kh^x$
 - q = discharge of drippers (volume per time)
 - P = operating pressure (force/area)
 - X = constants for specified emitters

Irrigation Water Requirerments

•
$$V_m = K_C \times K_P \times C_c \times E_P \times A$$

 $V_m =$ monthly irrigation water requirement
 $K_c =$ crop coefficient
 $C_c =$ Canopy factor
 $K_p =$ Pan evaporation factor (0.8)

$$E_p$$
 = normal monthly evaporation

A = area to be irrigated (m²)

Capacity of the Drip Irrigation System

• $Q = V_d \times T(n_a \times t)$ Q = capacity of the drip system $V_d =$ Daily water requirement T = irrigation interval days $n_a =$ water application efficiency t = duration

•
$$Q_p = \frac{Q}{n}$$

 \dot{Q}_p = Discharge per plant

n = number of plant

Number of laterals required:

- For vegetable crops 1 lateral for each slope.
- For orchads 1 to 2 per each row

Number of drippers per plant:

(% total area shaded by the tree × area per tree) / (effective area wetted by a single emitter)

Area Irrigated by the Dripper

• Area irrigated by a dripper

•
$$A_i = \frac{(L \times S \times P)}{100 \times N_e}$$

A_i = area irrigated

- L = spacing between adjacent plant row
- S = spacing between emission points
- P = % cropped area to be irrigated

 N_e = number of drippers at each emission point

III-THANK YOU-III