Digital Signal & Image Processing Lecture-2

Dr Prasanthi Rathnala

Department of ECE

Overview

- Signal Spectrum
- Periodic vs. Non-Periodic Signal
- Spectra of Non-Periodic Signals
- Properties of DTFT
- Spectra of Periodic Signals

Signal Spectrum

- The spectrum of a signal describes its frequency content.
- For example, a sinusoid contains a single frequency, while white noise contains all frequencies.
- The tool used to calculate an accurate spectrum depends on the nature of the signal i.e., (Periodic or Non-Periodic)

 Periodic signals are those that repeat at regular intervals for all time. • Non-periodic signals do not repeat at regular intervals.

If the signal is non-periodic, the discrete time Fourier transform (DTFT) is used.

The DTFT for a non-periodic signal gives signal's spectrum as

5

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-jn\Omega}$$

 The DTFT spectrum X(Ω) is a complex number and may be expressed as

 $X(\Omega) = |X(\Omega)|e^{j\theta(\Omega)}$

Properties of DTFT

- The spectrum for both non-periodic and periodic signals furnishes a magnitude spectrum and a phase spectrum.
- The Magnitude Spectrum- relates to the size or amplitude of the components at each frequency.
- The Phase Spectrum- gives the phase relationships between the components at different frequencies.
- For non-periodic signals, $X(\Omega) = |X(\Omega)| e^{j\theta(\Omega)}$
- The magnitude spectrum is even and the phase spectrum is odd.
- Both magnitude and phase spectra are continuous, smooth and periodic with period 2π .

Properties of DTFT

7

The magnitude spectrum may be plotted as $|X(\Omega)|$ versus digital frequency Ω or |X(f)| versus analog frequency f

• The **phase spectrum** may be plotted as $\theta(\Omega)$ versus digital frequency Ω or $\theta(f)$ versus analog frequency f

- The calculation of the DTFT requires all samples of the non-periodic signal.
- When signal has infinite number of non-zero samples that decrease in size, the DTFT may be approximated by truncating the signal where its amplitude drops below some suitably low threshold.
- It is easier to interpret the spectra by converting the digital frequencies into analog frequencies.

$$f = \Omega \frac{f_s}{2\pi}$$

Example 1: Find the magnitude and phase spectra for the rectangular pulse x[n] = u[n] - u[n-4] as function of Ω . Plot linear gains and phases in radians.

Solution

The spectrum may be computed as

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-jn\Omega} = 1 + e^{-j\Omega} + e^{-j2\Omega} + e^{-j3\Omega}$$

we can compute the spectrum by substituting the values of Ω
 The computation method is analogous to that used in the DTFT.

$$X(-\pi) = 0.00 \bot 0$$
$$X\left(-\frac{3\pi}{4}\right) = 1.0824 \bot 0.3927$$
$$\vdots$$
$$X\left(\frac{11\pi}{4}\right) = 1.0824 \bot - 0.3927$$
$$X(3\pi) = 0.00 \bot 0$$

_	Ω	$X(\Omega)$	LX(Ω)	θ(Ω) (rads
	~ π	$1 - \frac{1}{\pi} + \frac{1}{2\pi} + \frac{1}{3\pi}$	0.0000	0.0000
	3π 4	$1 + 1\frac{3\pi}{4} + 1\frac{3\pi}{2} + 1\frac{9\pi}{4}$	1.0824	0.3927
	$-\frac{\pi}{2}$	$1 + 1 \frac{\pi}{2} + 1 \pi + 1 \frac{3\pi}{2}$	0.0000	0.0000
	$-\frac{\pi}{4}$	$1 - 1 \frac{\pi}{4} + 1 \frac{\pi}{2} + 1 \frac{3\pi}{4}$	2.6131	1.1781
	0	$1 + 1_0 + 1_0 + 1_0$	4.0000	0.0000
	π 4	$1 - 1 - \frac{\pi}{4} + 1 - \frac{\pi}{2} + 1 - \frac{3\pi}{4}$	2.6131	1.1781
	π 2	$1 - 1 - \frac{\pi}{2} + 1 - \frac{\pi}{2} + 1 - \frac{3\pi}{2}$	0.0000	0.0000
/	$\frac{3\pi}{4}$	$1 + 1 \left[-\frac{3\pi}{4} + 1 \left[-\frac{3\pi}{2} + 1 \right] - \frac{9\pi}{4} \right]$	1.0824	-0.3927
	π	$1 + 1 - \pi + 1 - 2\pi + 1 - 3\pi$	0.0000	0.0000
	$\frac{5\pi}{4}$	$1 + 1 - \frac{5\pi}{4} + 1 - \frac{5\pi}{2} + 1 - \frac{15\pi}{4}$	1.0824	0.3927
/	$\frac{3\pi}{2}$	$1 + 1 \left \frac{3\pi}{2} + 1 \right \frac{-3\pi}{2} + 1 \left \frac{-3\pi}{2} + 1 \right \frac{-9\pi}{2}$	0.0000	0.0000
	$\frac{7\pi}{4}$	$1 + 1 - \frac{7\pi}{4} + 1 - \frac{7\pi}{2} + 1 - \frac{21\pi}{4}$	2.6131	1.1781
	2π	$1 + 1 - 2\pi + 1 - 4\pi + 1 - 6\pi$	4.0000	0.0000
	$\frac{9\pi}{4}$	$1 + 1 \left[-\frac{9\pi}{4} + 1 \left[-\frac{9\pi}{2} + 1 \right] -\frac{27\pi}{4} \right]$	2.6131	-1.1781
	$\frac{5\pi}{2}$	$1 + 1 - \frac{5\pi}{2} + 1 - \frac{5\pi}{2} + 1 - \frac{15\pi}{2}$	0.0000	0.0000
	$\frac{11\pi}{4}$	$1 + 1 - \frac{11\pi}{4} + 1 - \frac{11\pi}{2} + 1 - \frac{33\pi}{4}$	1.0824	-0:3927
	3π	$1 + 1 - 3\pi + 1 - 6\pi + 1 - 9\pi$	0.0000	0.0000

13

The magnitude and phase spectra are plotted for the range $0 \le \Omega \le \pi$

Magnitude spectrum has a shape that is characteristic for all rectangular pulses, called a sinc function

Rectangular Pulse Signal

14

Ĕ

1

0.8

0.6

0.4

0.2

-3

n

Example 2: Find the magnitude and phase spectra for the signal $x[n] = (0.1)^n u[n]$, sampled at 15kHz. Plot the magnitude in dB and phase in degrees.

Solution

$$x[n] = \{1 \quad 0.1 \quad 0.01 \quad 0.001 \quad 0.0001 \quad \cdots \}$$

- The signal is
- Since the sample amplitudes drop off quickly, the first three samples are sufficient to obtain good approximation to the DTFT spectrum.

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n]e^{-jn\Omega} = 1 + 0.1e^{-j\Omega} + 0.01e^{-j2\Omega}$$

-	X(11)	IX(Ω)	0(£2) (rads)	20log[X(Ω) (dB) 20log[X(f) (dB)	ፀ(£) (°) ፀ(ƒ) (°)	ž
i i	1 + 0.1 0 + 0.1 0	1.1100	0.0000	0,9065	0.0000	
	$1 + 0.1 - \frac{\pi}{4} + 0.01 - \frac{\pi}{2}$	1.0737	-0.0752	0.6181	-4.3108	-
	$1 = 0.1 \left[-\frac{\pi}{2} + 0.01 \left[-\frac{\pi}{2} \right] \right]$	0,9950	- 0,1007	-0,0432	-5.7679	د.،
	$1 \pm 0.1 \left[-\frac{3\pi}{4} + 0.01 \right] - \frac{3\pi}{2}$	61660	-0.0652	-0.6185	-3,7378	1.0
	$ +0.1 - \pi + 0.01 - 2\pi$	0.91(6)	0.0000	-0.8192	0.0000	-1

Spectra of Non-Periodic Signals Magnitude Spectrum Phase Spectrum 04 (°) (f) -2 0.2 -3 0 -0.2 -0.4 -0.6 -5 -0.8 -6 -1 1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000 0 0

Example 3: A piece of the spoken vowel "eee" sampled at 8 kHz, and their spectrum are shown in the figures. What are the main frequency components of x[n]?

Solution

- The vowel "eee" sound is quite regular but not perfectly periodic.
- As magnitude spectrum shows the vowel "eee" consists almost exclusively of 200 Hz and 400 Hz frequency components.

19

Periodic signals are those that repeat at regular intervals for all time.

- In periodic signals, the same sequence repeats over all time, the DTFT is not an appropriate tool for calculating the spectrum.
- The infinite sum that is part of the DTFT would give an infinite result.
- The tool needed to find the spectrum of a periodic signals is the Discrete Fourier Series (DFS).

If the signal is non-periodic, the discrete time Fourier transform (DTFT) is used:

$$X(\Omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-jn\Omega}$$

If the signal is periodic, the discrete Fourier series (DFS) is used:

$$C_k = \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{k}{N}n}$$

According to Fourier theory, every periodic signal can be expressed as the sum of sines and cosines or compactly, as the sum of complex exponentials.

The Fourier series representation for a periodic signal x[n] with period N is

$$x[n] = \frac{1}{N} \sum_{k=0}^{N-1} c_k e^{j2\pi \frac{k}{N}n}$$

Where

n is the sample number

k is the coefficient number

1/N is the scaling factor to recover x[n] from its Fourier expansion

• The Fourier coefficient c_k are calculated from the signal samples as

$$c_k = \sum_{n=0}^{N-1} x[n] e^{-j2\pi \frac{k}{N}n}$$

Since x[n] has a period of N samples therefore only N samples of the signal need to be used to find the coefficient c_k for all k.

The Fourier coefficient c_k are complex numbers and may be written in the polar form as

$$c_k = |c_k| e^{j\varphi_k}$$

- The magnitude spectrum is plotted as $|c_k|$ versus k
- F The phase spectrum is plotted as φ_k versus k
- The DFS is periodic with period N
- The magnitude spectrum of DFS is always Even
- The phase spectrum of DFS is Odd
- Both magnitude and phase spectra for periodic signals are line function, with line spacing f_s/N Hz, and contributions only at DC and harmonic frequencies.

The DFS index k corresponds to the analog frequency

25

$$f = k \frac{f_s}{N}$$

The k = 0 coefficient gives the DC component of the signal

- The k = 1 coefficient gives the Fundamental frequency f_s/N or first harmonic of the signal
- The reciprocal of the fundamental frequency f_s/N gives the one full cycle of the signal in time domain that is NT_s , where T_s is the sapling interval.
- Harmonics are the integer multiple of the fundamental frequency
- The k > 1 coefficient gives the higher harmonic of the signal

Complex Numbers

- **Rectangular Form:** x + jy
- Polar Form: r∠θ
- **Euler Form:** $e^{j\theta} = \cos \theta + j \sin \theta$
- Order Pair Form: $(\cos \theta, \sin \theta)$

Rectangular to Polar Conversion

•
$$r = \sqrt{x^2 + y^2}$$

• $\Theta = \tan^{-1}\frac{y}{x}$

Polar to Rectangular Conversion

- $x = r \cos \theta$
- $y = rsin\theta$

<u>Note:</u>

- for Addition (+) and Subtraction (-) use the Rectangular form
- for Multiplication (×) and Division (/) use the Polar form

29

Example 4: Find the magnitude and phase spectra for the periodic signal shown in the figure.

Spectra of Periodic Signals $c_k = 1 + e^{-j\pi \frac{k}{4}} + e^{-j\pi \frac{k}{2}} + e^{-j3\pi \frac{k}{4}}$

When k = 0 $c_0 = 1 + e^{-j\pi \frac{0}{4}} + e^{-j\pi \frac{0}{2}} + e^{-j3\pi \frac{0}{4}} = 1 + 1 + 1 + 1 = 4$

 $c_0 = 1 + 1 + 1 + 1 = 4$

 $c_0 = |4| \sqcup 0 rad$

$$\frac{|c_0|}{8} = \frac{|4|}{8} = 0.5$$

Spectra of Periodic Signals $c_k = 1 + e^{-j\pi \frac{k}{4}} + e^{-j\pi \frac{k}{2}} + e^{-j3\pi \frac{k}{4}}$

$$\frac{\text{When } k = 1}{c_1 = 1 + e^{-j\pi\frac{1}{4}} + e^{-j\pi\frac{1}{2}} + e^{-j3\pi\frac{1}{4}}}{c_1 = 1 + [\cos(\pi/4) - j\sin(\pi/4)] + [\cos(\pi/2) - j\sin(\pi/2)] + [\cos(3\pi/4) - j\sin(3\pi/4)]}$$

$$c_1 = 1 + [0.707 - j0.707] + [0 - j] + [-0.707 - j0.707]$$

$$c_1 = 1 - j2.414$$

$$c_1 = |2.6129| \bot - 1.1781 \, rad$$

$$\frac{|c_1|}{8} = \frac{|2.6129|}{8} = 0.3266$$

Note: compute the other values of C_k for k = 2,3,4,5,6,and 7 by following the above procedure.

Spectra of Periodic Signals $c_k = 1 + e^{-j\pi \frac{k}{4}} + e^{-j\pi \frac{k}{2}} + e^{-j3\pi \frac{k}{4}}$

k	c _k	1c+1/8	φ _k
0	$1 + 1 \boxed{0} + 1 \boxed{0} + 1 \boxed{0}$	0.5000	0.0
1	$1 + \left -\frac{\pi}{4} + 1 \right - \frac{\pi}{2} + 1 \left -\frac{3\pi}{4} \right $	0.3266	-1.1781
2	$1 + 1 - \frac{\pi}{2} + 1 - \pi + 1 - \frac{3\pi}{2}$	0.0	0.0
3	$1 + 1 - \frac{3\pi}{4} + 1 - \frac{3\pi}{2} + 1 - \frac{3\pi}{2}$	0.1353	-0.3927
4	$1 + 1 - \pi + 1 - 2\pi + - 3\pi$	0.0	.0.0
5	$1 + 1 - \frac{5\pi}{4} + 1 - \frac{5\pi}{2} + 1 - \frac{15\pi}{4}$	0.1353	0. 3927
6	$1 + 1 - \frac{3\pi}{2} + 1 - \frac{3\pi}{2} + 1 - \frac{9\pi}{2}$	0.0	0.0
7	$1 + 1 - \frac{7\pi}{4} + 1 - \frac{7\pi}{2} + 1 - \frac{21\pi}{4}$	0.3266	1.1781

Spectra of Periodic Signals <u>Magnitude Spectrum</u>

- The dashed line in the magnitude spectrum for this square wave shows that its envelope has the shape of the absolute value of a sinc function.
- All square and rectangular periodic signals have this

Spectra of Periodic Signals Phase Spectrum

Example 5: Find the magnitude and phase spectra for the periodic signal $x[n] = sin(n\pi/5)$ with sampling rate is 1 kHz.

Solution

- The sample values are listed in the Table.
- The signal is plotted in the figure.
- The signal is periodic with period N = 10

 $c_k = \sum_{n=0}^{10-1} x[n] e^{-j2\pi \frac{k}{10}n}$

k	c _k	lc _k l/N	φ <u></u>
0	0.0000	0.0000	0.0000
1	-j5.0000	0.50000	-1.5708
2	0.0000	0.0000	0.0000
3	0.0000	0.0000	0.0000
4	0.0000	0.0000	0.0000
5	0.0000	0.0000	0.0000
6	0.0000	0. * ?0	٥ .000 0 ک
7	0.0000	0.0000	0.0000
8	0.0000 ·	0.0000	0.0000
9	<i>j</i> 5.0000	0.5000	1.5708

